Document Type : Original Article
Authors
1 PhD student in the Department of Engineering and Water Management, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
2 Professor, Department of Water Science and Engineering, Faculty of Agriculture, Urmia University, Urmia, Iran
Abstract
Extended Abstract
Introduction
In arid and semi-arid regions like Iran, which have recently faced a severe water crisis, evaporation negatively impacts the quality of surface and groundwater resources. Increased evaporation rates lead to a higher concentration of salts and minerals in water bodies, which degrades not only water quality but also soil quality, leading to soil erosion and diminished crop yields. Controlling evaporation is therefore critical in managing such crises and preventing further severe consequences.
The volume of water lost due to evaporation from water reservoirs, which have relatively large surface areas, compared to the volume of stored water, exceeds the amount used in crop production. Advanced countries use a variety of methods and cover the reservoirs to reduce evaporation from both water surfaces and soils. These include physical methods (applying used tires, floating bolls, making light-permeable concrete slabs), chemical methods (applying fatty alcohols, hexadecanol, octadecanol, etc.), as well as growing certain plant species like duckweed.
Water management strategies such as water demand management, reusing wastewater, applying water surface covers, and improving the efficiency of water resource use, particularly in agriculture are essential Prioritizing water projects is also part of effective water management. However, methods that reduce evaporation while also generating energy are considered superior. One of the best covers for this purpose is solar panels for electricity generation.
Given Iran's low average precipitation (250 mm) compared to the global average (850 mm) and its high solar energy potential, utilizing this valuable resource can be highly beneficial in controlling evaporation from water surfaces. Consequently, this approach is cost-effective and economically viable compared to many other methods and is crucial for water conservation (Nematollahi et al, 2015; Álvarez et al, 2006; Soltani et al, 2018; Sepaskhah, 2018; Rezazadeh et al, 2020; Farzin & Alizadeh, 2015).
Materials and Method
In this research, climatic data for the city of Miandoab were obtained from the West Azerbaijan Province Meteorological Organization; data were analyzed. Key factors such as temperature, precipitation, humidity, solar radiation, and wind speed were studied to assess how the implementation of solar panels on irrigation canals might reduce their impact.
The analysis was carried out using Meteonorm software, a unique blend of trustworthy data sources and advanced calculation tools, providing access to normal years and registered time series. This software is used worldwide to create climatic data for a plethora of locations. It allows for the analysis of annual and monthly variations in temperature, precipitation, and solar radiation on a global scale, combined with databases and interpolation algorithms for different scenarios covering the period of 2010 to 2200.
Weather forecasts were generated with algorithms using the HadCM3 model, which is based on a simple autoregressive model, to produce realistic future monthly data (Remund et al, 2010). In the fourth IPCC report, the main emission scenarios, B1, A1B, and A2 ranged from the most optimistic to the most
pessimistic; these were replaced in the fifth report with RCP scenarios 2.6, 4.5, 6.0, and 8.5 (Mansouri et al., 2018). Furthermore, the study utilized PVSYST software for comprehensive simulations of solar photovoltaic systems, grid-connected, off-grid, and solar pump systems, analyzing shading effects and enabling the input of meteorological data from various sources, including personal data input manually. Finally, the analysis and reporting of these data were made possible (Khammar et al., 2020).
The optimization of photovoltaic systems depended on orientation according to the solar path (solar angle at local noon) as well as axial deviation to achieve maximum solar irradiance. Inputting geographical coordinates enhances the accuracy of the simulation results, adapting the projections to real-world settings. These data are based on NASA satellite measurements available for various geographical locations worldwide.
Results and Discussion
The study highlights the significant solar energy potential at the Miandoab wastewater treatment plant, with an estimated annual production of 131,000 kilowatt-hours. This capacity is sufficient to power around 271 water pump motors for six hours per day, demonstrating the viability of integrating solar energy into water management systems. Solar energy peaks in June, but higher summer temperatures reduce efficiency, illustrating the importance of temperature considerations when designing and placing solar modules. Additionally, floating solar panels serve the dual purpose of energy generation and reducing water loss through evaporation, preventing approximately 467.7 cubic meters of water loss annually, a critical factor in regions where water scarcity is a concern.
However, the study has some limitations. First, the analysis does not account for energy storage solutions such as batteries, which would be necessary for consistent power supply during off-peak solar hours. Second, while the panels reduce evaporation, their long-term impact on water quality and plant maintenance requires further investigation. Additionally, variations in solar radiation throughout the year may affect power consistency, especially during winter months. The economic analysis also assumes fixed energy prices and solar tariffs, which could fluctuate over time.Practically, the integration of floating solar panels can lead to self-sufficiency in energy production at the treatment plant, reducing dependency on external power sources and providing a return on investment within approximately 6.2 years. Furthermore, surplus electricity could be directed to nearby irrigation systems or local households, increasing the overall utility of the installation. Environmentally, the reduction in evaporation and carbon dioxide emissions supports sustainable development goals.
Conclution
The study concludes that floating solar panels offer a cost-effective, environmentally beneficial solution to water evaporation and energy production. It is recommended that future work include detailed cost-benefit analyses of energy storage systems to improve reliability, along with monitoring the impact of solar panels on water quality. Expanding the project to similar facilities in water-scarce regions could further enhance sustainability efforts and maximize the benefits of this technology.
Keywords
Main Subjects