نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار دانشگاه ارومیه

2 داشجوی کارشناسی ارشد دانشگاه ارومیه

چکیده

روابط مقاومت جریان از مولفه ­های کلاسیک آنالیز هیدرولیکی رودخانه است که برای روندیابی سیل، پیش ­بینی عمق و سرعت سیلاب­ های طرح، برآورد ظرفیت سیلاب آبراهه و پیش­بینی غیرمستقیم دبی­ های سیلاب از طریق روش شیب - مساحت، مورد نیاز خواهد بود. در این تحقیق به بررسی آزمایشگاهی اثر شکل ذرات و شیب بستر آبراهه بر ضریب زبری مانینگ پرداخته شده است. برای رسیدن به این هدف، از دو نوع سنگریزۀ طبیعی نسبتاً گردگوشه و شکستۀ تیزگوشه با اندازه­ های متوسط 3/8، 4/66 و 6/53 سانتی­متر و چهار شیب 0/4، 0/6، 0/8 و 1 درصد در شرایط مختلف هیدرولیکی استفاده شد. نتایج تحقیق نشان می ­دهد که با افزایش اندازۀ سنگریزه و شیب بستر آبراهه و کاهش استغراق نسبی مقدار ضریب زبری مانینگ افزایش می­ یابد. نتایج بررسی­ ها همچنین نشان می­ دهد که به ­طور متوسط مقدار ضریب زبری مانینگ سنگریزه ­های تیزگوشه در شیب­ های 0/4، 0/6، 0/8 و 1 درصد به­ ترتیب در حدود  2/7، 3/7، 3/8 و 5/9 درصد بیشتر از مقدار آن در سنگریزه­ های طبیعی نسبتاً گردگوشه است. اختلاف بین مقادیر ضریب زبری مانینگ در ذرات تیزگوشه و طبیعی نسبتاً گردگوشه با کاهش استغراق نسبی و افزایش شیب بستر افزایش می ­یابد. به سخن دیگر، اثر شکل ذرات بر ضریب زبری مانینگ در شیب­ های تند و استغراق­ نسبی کم (زبری در مقیاس بزرگ) قابل توجه است.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation on the Effect of Gravel Particles Shape on Manning’s Roughness Coefficient in Mountain Rivers

نویسندگان [English]

  • Mohammad Hemmati 1
  • Vafa Mostafa 2

چکیده [English]

Flow resistance equations are a classical component of river hydraulic analysis, required for such applications as flood routing, prediction of flow depths and velocities in the design of floods conveyance structures, channel flood capacity estimation and the indirect estimation of flood discharges by the slope-area technique. In this research the effect of particle shape and bed slope of channel on Manning’s roughness coefficient have been investigated experimentally. To achieve this aim, two types of gravels (natural and crushed shapes) with three average gravel sizes (3.8, 4.66 and 6.53 cm), four bed slopes (0.004, 0.006, 0.008 and 0.01 percent) were used under different hydraulic conditions. The results showed that as the gravel size and bed slope increases or the relative submergence decreases, the Manning’s roughness coefficient (n) increases. Moreover, the results revealed that the average value of Manning’s roughness coefficient (n) of crushed gravels were by 2.7, 3.7, 3.8 and 5.9 percent more than natural gravels in the bed slopes of 0.004, 0.006, 0.008 and 0.01 percent, respectively. Also, the difference between the values of Manning’s roughness coefficients (n) for crushed and natural particles increased by decreasing relative submergence and increasing bed slope. In other words, the effect of particle shape on Manning’s roughness coefficient is applicable in steep slopes and low relative submergences (large-scale roughness).

کلیدواژه‌ها [English]

  • Crushed
  • Gravel
  • Manning’s Roughness Coefficient
  • Mountain Rivers
  • Shape factor
Aberle, J. and Smart, G. M. 2003. The influence of roughness structure on flow resistance on steep slopes. J. Hydraul. Res.41(3): 259-269.
 
Aberle, J., Dittrich, A. and Nestmann, F. 1999. Estimation of gravel bed river flow resistance. J. Hydraul. Eng-ASCE. 125(12):1315-1319.
 
Bahrami-Yarahmadi, M. and Shafai-Bejestan, M. 2011. Experimental investigation of the effect of sediment particle shapes on Manning’s coefficient. J. Water Soil. 25(1): 51-60. (in Persian)
 
Bathurst, J. C. 1985. Flow resistance estimation in mountain rivers. J. Hydraul. Eng-ASCE. 111(4): 625-643.
 
Bathurst, J. C. 2002. At-a-site variation and minimum flow resistance for mountain rivers. J. Hydrol. 269(1-2): 11-26.
 
Bathurst, J. C., Li, R. H. and Simons, D. B. 1981. Resistance equation for large-scale roughness. J. Hydraul. Eng-ASCE. 107(12): 1593-1613.
 
Ferguson, R. 2007. Flow resistance equations for gravel- and boulder-bed streams. Water Resour. Res. 43(5):1-12.
 
Habibi, M., Namaee, M. R. and Saneie, M. 2014. An experimental investigation to calculate flow resistance in a steep river. KSCE J. Civil Eng. 18(4): 1176-1184.
 
Jarrett, R. D. 1984. Hydraulics of high gradient streams. J. Hydraul. Eng-ASCE. 110(11): 1519-1539.
 
Kim, J. S., Lee, C. J., Kim, W. and Kim, Y. J. 2010. Roughness coefficient and its uncertainty in gravel-bed river. Water Sci. Eng. 3(2): 217-232.
 
Nitsche, M. 2012. Macro-roughness, flow resistance and sediment transport in steep mountain streams.
Ph. D. Thesis. University of Leipzig. Zurich. German.
 
Palt, S. M. 2001. Sediment transport processes in the Himalayan Karakoram and its importance for hydro power plants. Ph. D. Thesis. University of Karlsruhe. Karlsruhe. German.
 
Prakash, H. 2014. Prediction of flow resistance in gravel bed river. Int. J. Eng. Tech. Res. (IJETR). 2(4): 155-159.
 
Reid, D. E. and Hickin, E. J. 2008. Flow resistance in steep mountain streams. Earth Surf. Proc. Land. 33(14): 2211-2240.
 
Rickenmann, D. and Recking, A. 2011. Evaluation of flow resistance in gravel-bed streams through a large field data set. Water Resour. Res. 47(7): 1-22.
 
Shafai-Bejestan, M. 2013. Basic Theory and Practice of Hydraulics of Sediment Transport (2nd Ed.). Shahid Chamran University Press. Ahvaz. Iran. (in Persian)
 
Shafai-Bejestan, M. 2012. Basic Concepts and Applications of Physical-Hydraulic Modeling. Shahid Chamran University of Ahvaz Press. Ahvaz. Iran. (in Persian)
 
Zimmermann, A. 2010. Flow resistance in steep streams: an experimental study. Water Resour. Res. 46(9):1-18.