نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه شهید باهنر کرمان

چکیده

رسوب­ گذاری مخازن سدها همواره به­ عنوان یکی از چالش ­های اساسی در استفادۀ پایدار از این سازه­ ها و عامل اصلی از دست رفتن حجم ذخیرۀ آنها مطرح بوده است. یکی از رایج­ ترین تکنیک­های مهندسی برای حفظ ظرفیت ذخیرۀ مخازن، تخلیۀ دوره­ای رسوب با رسوب­ شویی تحت فشار است. مرور منابع علمی مختلف نشان می­ دهد که در حال حاضر راندمان رسوب­ شویی تحت فشار بسیار پایین است. در این مقاله تأثیر استفاده از سازۀ نوع PBC بر راندمان تخلیۀ رسوب در حین رسوب­ شویی تحت فشار به ­صورت آزمایشگاهی بررسی شده است. در این راستا از سازۀ PBCبا چهار قطر و چهار طول نسبی مختلف در مخزن سد استفاده شد. مصالح ماسه­ ای غیرچسبنده با اندازۀ متوسط 0/36 میلی­ متر به ­عنوان رسوب
بستر مخزن در نظر گرفته شد. نتایج بررسی­ ها نشان می­دهد که با کاربرد سازۀ
PBC با مشخصۀ LPBC/Doutlet=5/26 و DPBC/Doutlet=1/32، راندمان رسوب­ شویی در مقایسه با شاهد 4/57 برابر شده ­است. با افزایش طول نسبی سازه، طول و عرض ماکزیمم نسبی مخروط رسوب­ شویی نسبت به شاهد افزایش یافت ولی تغییرات عمق ماکزیمم نسبی ناچیز بود. همچنین، کلیۀ پارامترهای هندسی مخروط رسوب­شویی در قطر بی ­بعد DPBC/Doutlet= 1/32 حداکثر مقدار خود را داشتند.

کلیدواژه‌ها

عنوان مقاله [English]

Improving the Reservoir’s Pressurized Flushing Efficiency by Connecting PBC Structure to the Dam Bottom Outlet

نویسندگان [English]

  • Mohamad Reza Madadi
  • Majid Rahimpour
  • Kourosh Qaderi

Shahid Bahonar University of Kerman

چکیده [English]

Reservoir sedimentation is always known as a serious problem for sustainable use of reservoirs and the main factor of reservoirs storage loss. One of the most common engineering techniques for preserving the reservoirs storage capacity is the periodical desilting of reservoirs by hydraulic flushing. Review of the literature shows that the pressurized flushing operation is currently accomplished with low efficiency. In this paper, the effect of PBC structure on the sediment removal efficiency during pressurized flushing operation was experimentally investigated. In this way, PBC structure with four relative length and four relative diameters were used in the reservoir. Non-cohesive sand particles with D50=0.36 mm were used as the deposited sediments in the reservoir. The results showed that by using the PBC structure with LPBC/Doutlet = 5.26andDPBC/Doutlet = 1.32, the flushing efficiency became 4.57 times more than that of reference test. By increasing the relative length of PBC structure, the maximum relative length and width of flushing cone increased, respectively, compared to the reference test while the variation of the maximum relative depth was negligible. In addition, all the geometric parameters of flushing cone hadtheir maximum values atDPBC/Doutlet = 1.32.

کلیدواژه‌ها [English]

  • Flushing Cone
  • Flushing Efficiency
  • PBC Structure
  • Reservoir Desilting
Abdollahpour, M. 2012. The effect of eddy flow on the sediment desilting from the reservoir’s bottom outlet. M. Sc. Thesis. Faculty of Agriculture. University of Tabriz. Tabriz. Iran. (in Persian)
 
Ahn, J., Yang, C. T., Boyd, P. M., Pridal, D. B. and Remus, J. I. 2013. Numerical modeling of sediment flushing from Lewis and Clark Lake. Int. J. Sediment Res. 28, 182-193.
 
Althaus, J. 2011. Sediment evacuation from reservoirs through intakes by jet induced flow. Ph. D. Thesis. École Polytechnique Fédérale de Lausanne. Lausanne. Switzerland.
 
Atkinson, E. 1996. Flushing sediment from reservoirs: RESFLUSH user manual. Report OD/ITM 54. HR Wallingford. UK.
 
Boeriu, P., Roelvink, D., Mulatu, C. A., Thilakasiri, C. N., Moldovanu, A. and Margaritescu, M. 2011. Modeling the flushing process of reservoirs. Proceedings of International Conference on Innovations, Recent Trends and Challenges in Mechatronics, Mechanical Engineering and New High-Tech Products Development.
 
Chaudhry, M. A. and Rehman, H. R. 2012. Worldwide experience of sediment flushing through reservoirs. Mehran Uni. Res. J. Eng. Technol. 31(3):395-408.
 
Chen, S. C., Wang, S. C. and Wu, C. H. 2010. Sediment removal efficiency of siphon dredging with wedge-type suction head and float tank. Int. J. Sediment Res. 25, 149-160.
 
Crookeston, B. M. 2008. A laboratory study of streambed stability in bottomless culverts. M. Sc. Thesis. Civil and Environmental Engineering. Utah State University. Logan. Utah.
 
Emamgholizadeh, S. and Fathi-Moghadam, M. 2014. Pressure flushing of cohesive sediment in large dam reservoirs. J. Hydrol. Eng. 19, 674-681.
 
Emamgholizadeh, S., Bina, M. and Ghomeshi M. 2007. The effect of reservoir water level and the outflow discharge through bottom outlet on the sediment removal in pressurized flushing. Agric. Sci. J. 30(4:A): 61-76. (in Persian)
 
Emamgholizadeh, S., Bina, M., Fathi-Moghadam, M. and Ghomeshi, M. 2006. Investigation and evaluation of the pressure flushing through storage reservoir. ARPN J. Eng. Appl. Sci. 1(4): 7-16.
 
Fathi-Moghadam, M., Emamgholizadeh, S., Bina, M. and Ghomeshi, M. 2010. Physical modelling of pressure flushing for desilting of non-cohesive sediment. J. Hydraul. Res. 48(4): 509-514.
 
Fang, D. and Cao, S. 1996. An experimental study on scour funnel in front of a sediment flushing outlet of a reservoir. Proceeding of  6th Federal Interagency Sedimentation Conference. Las Vegas.
 
Fruchart, F. and Camenen, B. 2012. Reservoir sedimentation: different type of flushing-friendly flushing: example of Genissiat dam flushing. ICOLD International Symposium on Dams for a Changing World. Japan.
 
Haun, S. and Olsen, N. R. B. 2012. Three-dimensional numerical modelling of the flushing process of the Kali Gandaki hydropower reservoir. Lakes Reserv. Res. Manag. 17(1): 25-33.
 
Jalili, H. and Hosseinzadeh-Dalir, A. 2014. Effect of development of eddies around the reservoir’s bottom outlet to improve the flushing efficiency. Water Res. J. 15, 51-62. (in Persian)
 
Khosronejad, A., Rennie, C. D., Salehi Neyshabouri, A. A. and Gholami, I. 2008. Three-dimensional numerical modeling of reservoir sediment release. J. Hydraul. Res. 46(2): 209-223.
 
Lai, J. S. 1994. Hydraulic flushing for reservoir desiltation. Ph. D. Thesis. University of California. USA.
 
Melville, B. W. and Chiew, Y. M. 1999. Time scale for local scour at bridge piers. J. Hydraul. Eng-ASCE. 125(1): 59-65.
 
Meshkati, M. E., Dehghani, A. A., Naser, G., Emamgholizadeh, S. and Mosaedi, A. 2009. Evolution of developing flushing cone during the pressurized flushing in reservoir storage. World Academy Science, Eng. Technol. 58, 1107-1111.
 
Mohammadi, M. N., Salmasi, F., Hosseinzadeh-Dalir, A. and Arvanaghi, H. 2014. Experimental investigation of the effect of semi-circular structure on the capacity of pressurized flushing of sediments from the reservoirs. J. Water Soil Sci. 24(2): 21-30. (in Persian)
 
Morris, G. L. and Fan, J. 2010. Reservoir Sedimentation Handbook: Design and Management of Dams, Reservoirs and Watershed for Sustainable Use. McGraw Hill. New York.
 
Powell, D. N. 2007. Sediment transport upstream of orifice. Ph. D. Thesis. Clemson University. UMI Number: 3290698.
 
Powell, D. N. and Khan, A., 2012. Scour upstream of a circular orifice under constant head. J. Hydraul. Res. 50(1): 28-34.
 
Powell, D. N. and Khan, A. 2015. Flow field upstream of an orifice under fixed bed and equilibrium scour conditions. J. Hydraul. Eng. 141(2): Doi:10.1061/(ASCE)HY.1943-7900.0000960, 04014076.
 
Qian, N. 1982. Reservoir sedimentation and slope stability; technical and environmental effects. Proceeding of 14th International Congress on Large Dams, Transactions. Rio de Janeiro. Brazil.
 
Samadi-Rahim, A. 2011. Experimental investigation of the effect of number and shape of bottom outlets on the size of flushing cone and the performance of pressure flushing in storage dams. M. Sc. Thesis. Faculty of Agriculture. Tarbiat Modares University. Tehran. Iran. (in Persian)
 
Shahirnia, M., Ayyyubzadeh, S. A. and Samani, J. M. V. 2014. Investigation of the effect of sediment level on the pressure flushing efficiency. J. Hydraul. 9(1): 11-25. (in Persian)
 
Talebbeydokhti, N. and Naghshineh, A. 2004. Flushing sediment through reservoirs. Iranian J. Sci. Technol. 28(B1): 119-136.
 
Tofighi, S., Samani, J. M. V. and Ayyubzadeh, S. A. 2015. Pressure flushing with expanding bottom outlet channel within dam reservoir. Modares Civil Eng. J. 15(2): 127-206. (in Persian)
 
Zhang, X., Zhang, Y. and Zhang, L. 2011. Analysis on reservoir desilting by spiral flow. Proceeding of The 2nd International Conference on Mechanic Automation and Control Engineering (MACE). July 15-17. Inner Mongolia. China.