نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار پژوهش پژوهشکده حفاظت خاک و آبخیزداری، سازمان تحقیقات اموزش و ترویج کشاورزی

2 کارشناس ارشد - وزارت نیرو-شرکت اب منطقه ای کرمانشاه

چکیده

در مناطق خشک و نیمه‌خشک کمبود بارندگی، و در دسترس نبودن منابع آب‌های سطحی به صورت پایه و دائمی، استفاده بهینه از منابع آب‌های زیرزمینی را موجب می‌شود. در سازه‌های ذخیره آب که سد زیرزمینی نیز از آن مستثنی نیست میزان ضریب آبگذری از مهم‌ترین مولفه‌های موثر در عملکرد می‌باشد. در برخی موارد به علت عدم وجود منابع قرضه و یا فاصله زیاد بین خواستگاه سد و منابع قرضه هزینه احداث سد افزایش می‌یابد، در این موارد ترکبیی از مصالح موجود و بنتونیت می‌تواند معیارهای مورد نیاز را تامین کند. در این تحقیق با ساخت مدل فیزیکی مقطعی از سد زیرزمینی تاثیر افزودن بنتونیت در کاهش ضریب آبگذری اشباع افقی در خاک غیر چسبنده بررسی می‌شود. برای این منظور یک نمونه خاک غیر چسبنده انتخاب و بنتونیت به میزان 2، 4 و 6 درصد ورن خاک خشک به آن اضافه شد و پس از تراکم در مدل فیزیکی مورد آزمایش نفوذپذیری قرار گرفت. نتایج نشان داد افزودن بنتونیت به علت سطح مخصوص بالا و تورم پذیری زیاد ضریب آبگذری را کاهش می‌دهد. هدایت هیدرولیکی با افزایش بنتونیت تا 4 درصد با شیب تندی کاهش یافته و در محتوای بالاتر بنتونیت، شدت کاهش هدایت هیدرولیکی کندتر می‌شود بگونه‌ای که می‌توان گفت نمودار لگاریتم هدایت هیدرولیکی اشباع در برابر محتوای بنتونیت تابعی خطی است. بر اساس این تابع مقدار بنتوتیت مورد نیاز برای کاهش آبگذری اشباع افقی خاک غیر چسبنده مورد آزمایش به مقدار آبگذری نمونه خاک استفاده شده در هسته سد زبرزمینی سنگانه در یک تراکم نسبی مشابه 6/4 درصد می‌باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation on Application of the Bentonite for Underground Dam: Using Laboratory Model

نویسندگان [English]

  • Nadergholi Ebrahimi 1
  • Mohamad Tajbakhsh 2

1 AREEO/SCWMRI

2 Ministry of Energy-Kermanshah regional water authority

چکیده [English]

In arid and semi-arid regions, due to shortage of permanent surface water resources the optimal use of groundwater becomes important. In this regard, the storage of sub-surface flow within alluvial reservoirs of underground dams appears to be economical, and cost-effective. In some cases, because of the lack of construction materials at the site, the cost increases. In this case a combination of available construction materials and bentonite can meet the required criteria. In this research, by constructing a physical model of underground dam the effect of adding bentonite on decreasing horizontal saturated hydraulic conductivity in non-cohesive soil was investigated. For this purpose, 2, 4 and 6% (by weight of dry soil) of bentonite was added to the soil and after compaction by using a model, hydraulic permeability was measured. The results indicated that the hydraulic conductivity decreases with increase in the bentonite content due to the high specific surface area and high swelling potential of bentonite. Also hydraulic conductivity was reduced because of steep slope (up to 4% of bentonite) and with further increase in hydraulic conductivity the reduction rate was slowed down so it can be said that the relationship between the logarithmic graph of hydraulic conductivity and the bentonite content can be represented by a linear model. Based on this model, 4.6 percent of bentonite is required to reduce the saturated hydraulic conductivity of a noncohesive soil equal to the saturated hydraulic conductivity of the soil used in the core of the Sanganeh underground dam (in a similar relative compaction).

کلیدواژه‌ها [English]

  • Bentonite
  • Laboratory Model
  • Saturated hydraulic conductivity
  • Underground Dam
Abeele, W. V. 1986. The influence of bentonite on the permeability of sandy silts. Nucl. Chem. Waste Man.6, 81-88.
 
Benson, C. H., Zhai, H. and Wang, X. 1994. Estimating hydraulic conductivity of compacted clay liners. Geotech. Eng. ASCE. 120(2): 366-387.
 
Benson, C. and Daniel, D. 1990. Influence of clods on hydraulic conductivity of compacted clay. Geotech. Eng. ASCE. 116(8): 1231-1248.
 
Carman, P. C. 1939. Permeability of saturated sands, soils and clays. J. Agr. Sci. 29, 262-273.
 
Chapuis, R. P. and Aubertin, M. 2003. On the use of the Kozeny-Carman’s equation to predict the hydraulic conductivity of a soil. Can. Geotech. J. 40(3): 616-628.
 
Ebrahimi, N., Tajbakhsh, M., Fathi-Moghadam, M. and Musavi-Jahromi, S. H. 2015. Determination of permeability coefficicient for compacted saturated cohesive soils in underground dams using physical parameters. J. Agric. Eng. Res. 16(3): 1-14. (in Persian)
 
 
Eisenhour, D. D. and Brown, R. K. 2009. Bentonite and its impact on modern life. Elements. 5(2): 83-88.
 
Gates, W. P., Bouazza, A. and Churchman, G. J. 2009. Bentonite clay keeps pollutants at bay. Elements. 5(2): 105-110.
 
Ishida, S., Tsuchihara, T., Yoshimoto, S. and Imaizumi, M. 2011. Sustainable use of groundwater with underground dams. JARQ-Jpn. Agr. RES. Q. 45(1): 51-61.
 
Kumar, S. and Yong, W. 2002. Effect of bentonite on compacted clay landfill barriers. Soil Sediment Contam.11(1): 71-89.
 
Landis, C. R. and von Maubeuge, K. 2004. Activated and natural sodium bentonites and their markets. Min. Eng.56, 17-22.
 
Mitchell, J. K. and Soga, K. 2005. Fundamentals of Soil Behavior. 3rd Ed. Wiley, New York, NY.
 
Sallfors, G. and Oberg-Hogsta, A. 2002. Determination of hydraulic conductivity of sand-bentonite mixtures for engineering purposes. Geotech. Geol. Eng. 20, 65-80.
 
Shamsaei, A. 2012. Hydraulic of Flow in Porous Media (Vol. II). Amirkabir University Press. (in Persian)
 
Solmaz, P., Gedik, A. G., Lav, M. A. and Lav, A. H. 2008. Utilization of waste foundry sand (WFS) as impermeable layer (drainage blanket) for pavement structures. 1st ISSMGE International Conference on Transportation Geotechnics. Aug. 25-27. Nottingham, UK.
 
Tajbakhsh, M., Fathi-Moghadam, M. and Ebrahimi, N.2015. Laboratory evaluation of permeability coefficient relationships for saturated sandy soils. J. Pajouhesh Sazandegi. 109: 1-14. (in Persian)