نوع مقاله : مقاله پژوهشی

نویسندگان

استادیار گروه علوم و مهندسی آب، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران

چکیده

با توجه به نیاز مبرم مطالعات مهندسی هیدرولیک به تعیین اندازۀ رسوبات سطحی و در معرض جریان بستر، و با توجه به مشکلات بسیار در تعیین آنها با روش‌های اندازه‌گیری دستی و آزمون‌های دانه‌بندی با الک در آزمایشگاه، در تحقیق حاضر الگوریتمی توسعه داده شده ­است که می‌تواند با تهیۀ تعدادی تصویر از بستر حین بازدید میدانی و تهیۀ اطلاعات کاربری اراضی، کمک شایانی به سهولت مطالعه، تسریع روند آن و افزایش دقت مدل­سازی کند. برای بررسی صحت و دقت این الگوریتم در مقابل روش دانه‌بندی مرسوم مکانیک خاک، از چهار دوربین دیجیتال مختلف (با قدرت تفکیک 6، 10، 1/12 و 14 مگاپیکسل) و دو اندازه قاب تصویر مربعی (به ابعاد 5/0 و 1 متر) هم در شرایط خشک و هم در شرایط جریان ناچیز آب، در بازه‌ای 5 کیلومتری از مسیر رودخانۀ سیرچ در شمال شرق کرمان برای تصویربرداری و نمونه‌برداری رسوب استفاده شد. نتایج به­دست آمده در بستر خشک نشان می­دهد که دوربین‌های با توان تفکیک بالا کمترین میزان خطا را در برآورد قطر متوسط مصالح دارند. هرچند به­علت یکنواخت بودن ذرات بستر، عملکرد دوربین‌های 6 و 14 مگاپیکسلی ( با حداکثر میزان اختلاف در برآورد قطر متوسط کمتر از 12 درصد) نیز قابل قبول است. دوربین‌های 1/12 و 10 مگاپیکسل نیز به­ترتیب کمترین خطا را در برآورد حداکثر قطر ذرات به­دست داده‌اند. در بسترهای تر، محاسبات حاکی از آن است که نتایج حاصل از پردازش تصویرهای به­دست آمده از دوربین با توان تفکیک پایین 6 مگاپیکسلی، اختلاف زیادی با دیگر دوربین­ها، خصوصاً در توزیع منحنی دانه­بندی و نیز مشخصات آماری ذرات بستر، دارد. بررسی مشخصات آماری روی توزیع دانه­بندی مصالح سطحی بستر رودخانه نشان می­دهد که قطر متوسط، قطر حداکثر و انحراف از معیار ذرات به­دست آمده از دوربین با توان تفکیک 10 مگاپیکسل بیشتر از آنهایی است که از دیگر دوربین­ها به­دست ­آمده است. در یک جمع­بندی کلی می­توان گفت که ارتباط مستقیمی بین پارامترهای ابعاد تصویر (فریم)، قدرت تفکیک دوربین و فاصلۀ آن از بستر آبراهه وجود دارد و با کاهش قدرت تفکیک دوربین در یک فریم ثابت، حتماً باید فاصلۀ دوربین نسبت به بستر آبراهه افزایش یابد و برعکس. نتایج همچنین نشان می­دهد که در آبراهه‌های دارای توزیع دانه‌بندی نسبتاً یکنواخت، می‌توان از هر دوربینی استفاده کرد. اما در آبراهه‌های دارای بستر درشت‌دانه یا ریزدانه بهتر است  از دوربین‌های با توان تفکیک به‌ترتیب پایین و بالا استفاده کرد.

کلیدواژه‌ها

عنوان مقاله [English]

Determination of Surface Material Gradation of Streams in Dry and Wet Conditions Using Image Processing Technology (Case Study: Sirch River, Kerman)

نویسندگان [English]

  • asghar azizian
  • Amir Samadi

Water Eng. Dept.

چکیده [English]

Hydraulic engineering studies need to know the sizes of surface sediments exposed to flow. The conventional ways, manual measurement methods such as performing gradation tests (sieve analysis) in a laboratory, face many problems in determining the sizes of sediments. An algorithm has been developed to facilitate problems. By providing a number of images of the bed materials during field surveys and providing land use information, this algorithm can help accelerating processing and increasing the accuracy of modeling. To verify the accuracy and precision of this algorithm, versus the conventional soil gradation method, four different digital cameras (with 6, 10, 12.1, 14 megapixels resolution) and two square-frames (0.5 and 1 meter in size) used for imaging and sampling bed materials, in dry and under low water flow conditions, in a distance of 5 km in Sirch River, north east of Kerman. The results showed that cameras with high resolution had the least error in estimating the average diameters of materials in dry beds. However, due to the uniformity of the bed surface particles, the performance of cameras with 6 and 14 megapixels was also acceptable, so that the maximum difference in the average diameter estimation was less than 12%. The cameras with 12.1 and 10-megapixels had lowest error in estimation the maximum particle's diameters, respectively. Furthermore, calculations carried out in the wet bed surface indicated that the results of images processing obtained from the camera with a low resolution, 6 megapixels, differ greatly from what had been obtained by other cameras, especially in distribution of the gradation curve and statistical characteristics of the particles. A survey on the statistical characteristics of the bed surface materials distribution showed that the average diameter, maximum diameter and deviation of the particles obtained from the camera with a resolution of 10 megapixels were greater than those obtained by other cameras. In a general conclusion, it can be stated that there is a direct relationship between these parameters: the image dimensions (frame), the resolution of the camera and its distance from the stream bed, in a way that by reducing the resolution of the camera in a fixed frame, the camera's distance from the stream bed should be increased, and vice versa. Based on the results in the streams with fairly uniform grain distribution, any camera can be used. But in streams that have a coarse-grained or fine-grained bed, it's better to use low and high resolution cameras, respectively.

کلیدواژه‌ها [English]

  • Grain Size
  • Image Processing
  • Sediment
  • Simulation
  • Stream
 
Abdesharif-Esfahani, M., Karbasi, M., Rajabi-hashjin, M. and Kiasalari, A. 2005. Introduction of grid photography method of riverbed for determining armored-layer gradation of a coarse-grained bed (Case study: Karaj River). 5th Iranian Hydraulic Conference, Nov. 8-10. Shahid Bahonar University, Kerman, Iran. (in Persian)
 
Azizian, A., Morshedi, F. and Arian, A. 2013. Utilization of image processing technique for obtaining surface material gradation curve of the riverbed. 9th River Engineering International Seminar, Jan. 22-24. Shahid Chamran University, Ahvaz, Iran. (in Persian)
 
Beggan, C. and Hamilton, C. W. 2010. New image processing software for analyzing object
size-frequency distributions, geometry, orientation, and spatial distribution. Comput. Geosci. 36(4): 539-549.
 
Bunte, K. and Abt, S. R. 2001. Sampling frame for improving pebble count accuracy in course gravel-bed streams. J. Am. Water Resour. Assoc. 37(4): 1001-1014.
 
Chang, F. J. and Chung, Ch. H. 2012. Estimation of riverbed grain-size distribution using image processing techniques. J. Hydrol. 440-441, 102-112.
 
Chung, Ch. H. and Chang, F. J. 2013. A refined automated grain sizing method for estimating river-bed grain size distribution of digital images. J. Hydrol. 486, 224-233.
 
Cislaghi, A., Chiaradia, E. A. and Bischetti, G. B. 2016. A comparison between different methods for determining grain distribution in coarse channel beds. Int. J. Sediment Res. 31(2), 97-109.
 
Faramarzi, J., Hafezi-Moghaddas, N., Golzarian, M. R. and Ghafouri, M. 2015. Estimation of granular grain curve based on image processing technique, 19th Symposium of the Geological Society of Iran and 9th National Geological Conference of Payame-Noor University. Dec.17-18. Payame-Noor University, Tehran, Iran. (in Persian)
 
Ferreira, T. and Rasband, W. S. 2012.  ImageJ, User Guide, IJ 1.46r, U.S. National Institutes of Health, Bethesda, Maryland, USA. Available at: imagej.nih.gov.
 
Graham, D. J., Rice, S. P. and Reid, I. 2005. A transferable method for the automated grain sizing of river gravels. Water Resour. Res. 41(7): 1-12.
 
Payesteh, M., Lashkar-Ara, B. and Fathi-Moghadam, M. 2018. An Estimation of the particle-size distribution in gravel bed river Using Image Processing. Irrig. Sci. Eng. 40(4): 125-139.
(in Persian)
 
Penders, C. A. 2010. Determining mean grain-size in high gradient streams with autocorrelative digital image processing. M. Sc. Thesis. Appalachian State University, Boone, North Carolina, United States.
 
Rasband, W. S. 2012. ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, Available at: imagej.nih.gov.
 
Rubin, D. M., Chezar, H., Harney, J. N., Topping, D. J., Melis, T. S. and Sherwood, C. R. 2007. Underwater microscope for measuring spatial and temporal changes in bed-sediment grain size. Sediment. Geol. 202(3): 402-408.
 
Sadeghi, S. H. and Gharemahmoodli, S. 2013. Accuracy analysis of bed sediment gradation using the processing of images of cameras with different resolutions. J. Watershed Eng. Manage. 5(2): 115-124. (in Persian)
 
Storm, K. B., Kuhns, R. D. and Lucas, H. J. 2010. Comparison of automated image-based grain sizing to standard pebble-count methods. J. Hydraul. Eng. 136(8): 461-473.
 
Warrick, J. A., Rubin, D. M., Ruggiero, P., Harney, J. N., Draut, A. E. and Buscombe, D. 2009. Cobble cam: grain-size measurements of sand to boulder from digital photographs and autocorrelation analyses. Earth Surf. Process. Landf. 34(13): 1811-1821.