نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، مهندسی عمران، دانشکده عمران، دانشگاه تهران، تهران، ایران

2 استادیار ، دانشکده مهندسی عمران، دانشگاه تهران، تهران، ایران

3 دانشیار، پژوهشکده حفاظت خاک وآبخیزداری،سازمان تحقیقات،آموزش و ترویج کشاورزی،تهران ایران

چکیده

سرریزها سازه‌های هیدرولیکی هستند که برای عبور آب‌های اضافی و سیلاب‌ها در سدها استفاده می‌شوند. سرریزهای جانبی نوعی خاص از سرریزها هستند که به‌ موازات جریان اصلی در دیوارۀ مجاری انتقال آب، مانند کانال‌ها یا رودخانه‌ها، جانمایی می‌شوند و هنگامی‌که سطح آب بالا می‌آید تنظیم دبی و کنترل سطح آب را به‌عهده دارند. کنترل و انحراف سیلاب در مخازن سدها، انحراف جریان و محافظت سازه در برابر سیلاب در رودخانه‌ها از دیگر موارد کاربرد سرریزهای جانبی است. این تحقیق، در شرایط آزمایشگاهی و با 16 مدل سرریز کلید پیانویی ذوزنقه‌ای تیپ A با سه ارتفاع متفاوت 10، 15 و 20 سانتی‌متر اجرا ‌شده است. نتایج بررسی­هانشان می‌دهد که سرریز با P=15cm در نسبت بی‌بعد 0/4 > H/P> 0/2 دارای بیشترین میزان ضریب دبی عبوری  است و در نسبت بی‌بعد 0/5 < H/P سرریز با P=20cm بیشترین ضریب دبی عبوری CM را دارد. در مقایسۀ ضریب دبی عبوری از سرریز جانبی کلید پیانویی ذوزنقه‌ای با سرریز جانبی کنگره‌ای ذوزنقه‌ای 12 درجه و 6 درجه به‌ترتیب 1/2 و 1/87 برابر و از سرریز جانبی کنگره‌ای مثلثی 1/5 برابر دبی بیشتری آب از خود عبور می‌دهد.

کلیدواژه‌ها

عنوان مقاله [English]

Laboratory Investigation on Discharge Coefficient of Trapezoidal Piano Key Side Weirs

نویسندگان [English]

  • minasadat seyedjavad 1
  • seyed Taghi Omidnaeeni 2
  • mojtaba saneie 3

1 College of civilengeniering,university of Tehran,Tehran,Iran.

2 Assistant Professor, Faculty of Civil Engineering, University of Tehran, Tehran, Iran.

3 Associate Professor, Soil and Water Conservation Research Institute, Agricultural Research, Education and Promotion Organization, Tehran, Iran.

چکیده [English]

Introduction
The flow passing through a side weir, one of the varieties of water diversion structures, is a variable flow with decreasing flow rate. Labyrinth weir is the basis for piano key weirs. They are often constructed with vertical walls and are much more efficient than the linear weirs. Nevertheless, the flow, especially the bottom flow, enters this type of weirs and passes through two vertical walls of the side crests. Then it becomes squeezed and therefore the upstream and downstream crests come up with inappropriate hydraulic behavior. Also, the most outstanding disadvantage of this type of weirs is the large foundation area needed to be constructed on the concrete dams. The piano key weirs are a modern type of the nonlinear weirs which have been developed by Hydro Coop Institute of France and the Hydraulic and Environmental laboratory of the Biskara University of Algeria. In general, these weirs comprise of 4 different types, the differences of which lie in the presence or the absence of slopes created for them. Type A is sloped both upstream and downstream, Type B is sloped upstream, Type C is sloped downstream and Type D lacks any slope. The present study conducted show the effective geometrical parameters on the hydraulic performance and discharge coefficient (CM) of the trapezoidal piano key side weirs (TPKSW). The type of flow and its variations in a side weir can be considered as the C_M of the side weir, using simplifications and assumptions suggested by De-Marchi in 1934 to obtain suitable equivalents for side weirs.
 
Methodology
All tests have been conducted in a closed-loop rectangular Plexiglas flume in Soil Conservation and Watershed Management Research Institute (SCWMRI), Tehran, Iran. The study canal  was10m long, 0.6m wide and 0.6m high. All tests have been carried out on the 0.6m wide canal. To prevent flow turbulence upstream of the canal, tranquilizing racks were used at the upstream. A calibrated triangular weir was also applied to measure the flow at upstream. Also, a calibrated rectangular sharp-crested weir was used downstream. The water surface profiles were measured longitudinally. For this purpose, a digital depth profiler with 0.1 mm precision was used. The profiler accuracy was valid for almost stable water surface but it could be decreased in highly turbulent flows. An electromagnetic velocity meter with 0.001 m/s precision was used to determine velocity components to obtain parallel (𝑉𝑥) and perpendicular (𝑉𝑌)to the side weir. The profiler and the velocity meter could move on a rail in both X and Y directions. Flow rates at the main and the collection canal were measured by a calibrated 90° V-notched and a rectangular weir, respectively. Figure 6 shows a general view of the laboratory. In this research, 16 models of Type-A trapezoidal weirs have been studied in two cases of 1 and 2. The weirs had 3mm thickness made of Plexiglas. The tests were carried out preventing the effects of viscosity and surface tension over the weir and considering the height of more than 3 cm.
 
Results and Discussion
In this research, for investigating the effects of a number of inlet cycles, the weirs were tested at two different directions of the side weirs located in the main canal. The results showed that the weirs with 15cm and 20cm had the highest discharge coefficient CM in dimensionless ratios of 0.2> H/P> 0.4 and H/P>0.5 respectively. Having reviewed previous studies, it could be concluded that the trapezoidal piano key side weir was capable of releasing a flow 1.2 times more than that of the linear trapezoidal labyrinth weir with 12 degrees angle and 1.87 times more than the one with 6 degrees angle, and 1.5 times more than that of the triangular labyrinth weir.
 
Conclusions
The result of the present study has shown that trapezoidal piano key weir can perform well on the side of trapezoidal and triangular labyrinth weir. In the comparisons made in this study, in comparison with the discharge coefficient of the side weir overflow, the trapezoidal piano key with the lateral overflow of the 12-degree Congress and the 6-degree trapezoidal labyrinth is equal to 1.2 and 1.87, respectively, and 1.5 times the lateral overflow of the triangular labyrinth weir. Although, the trapezoidal piano key weir in both lateral and direct modes is 1.55 times higher than the rectangular overflow of the direct piano key of the discharge coefficient. The trapezoidal piano key side weir in the dimensionless ratio of 0.4> H / P> 0.2 has the highest discharge coefficient flow.

Keywords:Discharge, Flow, Water Diversion Structure

کلیدواژه‌ها [English]

  • Discharge
  • Flow
  • Water Diversion Structure
Abrishami, J., & Hosseini, M. (2017). Hydraulic Open Canals. Mashhad University Press, 19th Ed. (in Persian)
 
Anderson, R., & Tullis, B. (2012). Piano key weir: Reservoir versus channel application. Journal of Irrigation and Drainage Engineering, 138(8): pp. 773–776.
 
Anderson, R. M., & Tullis, B. P. (2013). Piano key weir hydraulics and labyrinth weir comparison. Journal of Irrigation and Drainage Engineering, 139(3): pp. 246-253.
 
Askari, R., & Vatankhah-Mohammadabadi, A. (2018). Theoretical and laboratory study of lateral trapezoid lateral overflow in underwater conditions. Iranian Journal of Soil and Water Research, 50(5): pp. 1169-1181. (in Persian)
 
De-Marchi, G. (1934). Saggio di teoria di funzionamente delgi stramazzi laterali. Energia Elettrica, 11(11): pp. 849-860. (in Italian)
 
Emiroglu, M. E., Kaya, N., & Agaccioglu, H. (2009). Discharge capacity of labyrinth side weir located on a straight channel. Journal of Irrigation and Drainage Engineering, 136(1): pp. 37-46
 
Erpicum, S., Silvestri, A., Dewals, B., Archambeau, P., Pirotton, M., Colombié, M., & Faramond, L. (2013). Escouloubre piano key weir: Prototype versus scale models. International Workshop on Labyrinth and Piano Key Weirs II-PKW, Nov. 20-22, Paris, France. CRC Press.
 
Esmaeilpour, L., Farsadizadeh, D., & Hosseinzadeh-Dalir, A. (2016). Investigation of hydraulic characteristics of one-side semi-circular labyrinth side weir. Journal of Water and Soil Science, 26(1.1): pp. 187-195. (in Persian)
 
Gandoshmin, A., & Norouzi, B. (2014). 3D hydrodynamics of curved piano key overflows on plan. Journal ofHydraulic, 9(3): pp. 61-79. (in Persian)
 
Kabiri-Samani, A. R., & Javaheri, A. (2012). Discharge coefficient for free and submerged flow over the piano key weirs. Journal of Hydraulic Research, 50(1): pp. 114-120.
 
 Karimi, M., Attari, J., Saneie, M., & Jalili-Ghazizadeh, M. R. (2018). Side weir flow characteristics: Comparison of piano key, labyrinth, and linear types. Journal of Hydrology Engineering, 144(12): pp. 1-13.
 
Kazemi, J., Sanei, M., & Azhdari-Moghadam, M. (2016). Scale effect of the water surface profile on ogee weir with curvature in plan and training walls. Journal of Applied Research of Irrigation and Drainage Structures Engineering. 17(66): pp. 119-136. (in Persian)
 
Lempérière, F., Vigny, J. P., & Ouamane, A. (2011). General comments on labyrinths and piano key weirs: The past and present. International Workshop on Labyrinth and Piano Key Weirs I-PKW, Feb. 9-11, Liège, Belgium. CRC Press.
 
Mehboudi, A., Attari, J., & Hosseini, S. A. (2016). Experimental study of discharge coefficient for trapezoidal piano key weirs. Journal of Flow Measurement and Instrumentation, 50, pp. 65-72.
 
Mehri, Y., Soltani, J., Saneie, M., & Rostami, M. (2018a). Discharge coefficient of a c-type piano key side weir at 30° and 120° sections of a curved canal. Journal of Civil Engineering, 4(7): pp. 1702-1713.
 
Mehri, Y., Soltani, J., Saneie, M., & Rostami, M. (2018b). Discharge Coefficient of type-c piano key side weir in 30-degree sector of a channel having longitudinal curvature. Journal of Agricultural Mechanization and Systems Research, 19(70): pp. 133-148. (in Persian)
 
Oertel, M. (2015). Discharge coefficients of piano key weirs from experimental and numerical models. 36th IAHR World Congress, Jun. 28-Jul. 3. The Hague. The Netherlands.
 
Roushangar, K., Alami, M. T., Majedi-Asl, M., & Shiri, J. (2017). Modeling discharge coefficient of normal and inverted orientation labyrinth weirs using machine learning techniques. ISH Journal of Hydraulic Engineering, 23(3): pp. 1-10.
 
Saghari, A., Sanei, M., & Hosseini, Kh. (2019). Experimental Study of one and two-cycle trapezoidal piano key side weirs in a curve channel. Water Science & Technology Water Supply, 19, doi:10.2166/ws.2019.029.