نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری سازه های آبی، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه لرستان، خرم آباد، ایران

2 استادیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه لرستان، خرم آباد، ایران

3 استاد گروه سازه های آبی، دانشکده مهندسی علوم آب، دانشگاه شهید چمران، اهواز، ایران

4 استادیار، گروه مهندسی آّب، دانشکده کشاورزی، دانشگاه لرستان، خرم آباد، ایران

5 دانشیار، گروه مهندسی آّب، دانشکده کشاورزی، دانشگاه لرستان، خرم آباد، ایران

چکیده

سرریزها از سازه‌های هیدرولیکی مهم برای کنترل جریان، تنظیم سطح آب و اندازه‌گیری دبی جریان در کانال‌های آبیاری هستند. مزیت سرریزهای شیب­دار به‌واسطۀ وجود شیب بالادست آن است که از به ­وجود آمدن منطقۀ سکون آب در بالادست جلوگیری می­ کند. سرریزها با تسهیل در عبور ذرات رسوب می توانند استغراق زیادی را تحمل کنند. هدف از این تحقیق بررسی شرایط جریان آزاد و مستغرق و ارائۀ روابطی برای محاسبۀ ضریب دبی این نوع سرریزها و مقایسۀ این نوع سرریزها با سرریز لبه پهن مستطیلی است. برای این منظور، سه مدل سرریز شیب­ دار با شیب بالادست، شیب پایین ­دست و شیب ترکیبی بالادست و پایین ­دست و یک مدل سرریز لبه­ پهن مستطیلی در دامنه ­ای وسیع از دبی ­ها (3 تا 30 لیتر بر ثانیه با گام­های 3 لیتر بر ثانیه) در یک فلوم آزمایشی به طول، عرض و ارتفاع به‌ترتیب 15، 0.3 و 0.5 متر بررسی شد. نتایج بررسی­ ها نشان داد با افزایش نسبت هد کل جریان روی سرریز به عرض قاعده سرریز از 0.2 تا 1، ضریب انتقال دبی سرریزهای شیب­دار از 0.37 به 0.56 افزایش می­ یابد و ضریب انتقال دبی سرریز لبه ­پهن مستطیلی از 0.55 به 0.41 کاهش می­یابد و بیشترین ضریب انتقال دبی مربوط به مدل سرریز با شیب ترکیبی بالادست و پایین­ دست و کمترین ضریب انتقال دبی مربوط به مدل سرریز با شیب بالادست است. نتایج تحقیق همچنین نشان داد سرریز لبه پهن حساسیت کمتری به تغییرات نسبت هد کل جریان روی سرریز به عرض قاعده سرریز دارد. دو رابطه نیز برای محاسبۀ ضریب­ های انتقال دبی در شرایط جریان آزاد و مستغرق در سرریزهای شیب­ دار ارائه ‌شده است. ضریب تبیین و جذر میانگین مربعات خطا به‌ترتیب برای شرایط جریان آزاد 0.90 و 0.017 و برای شرایط جریان مستغرق به‌ترتیب 0.91 و 0.040 به‌دست آمد.

کلیدواژه‌ها

عنوان مقاله [English]

Laboratory Study of Free and Submerged Flow in Inclines Weirs

نویسندگان [English]

  • Mehrdad Kheiraei 1
  • Hojjat Allah Yonesi 2
  • Manoochehr Fathi-Moghadam 3
  • babak Shahinejad 4
  • Hassan Torabi podeh 5

1 PhD Student, Department of Water Engineering. Faculty of Agriculture, Lorestan University, Khorramabad, Iran

2 Assistant Professor, Department of Water Engineering. Faculty of Agriculture, Lorestan University, Khorramabad, Iran. Email: yonesi.h@lu.ac.ir

3 Professor, Faculty of water Engineering, Shahid Chamran University, Ahwaz , Iran

4 Assistant Professor, Department of Water Engineering. Faculty of Agriculture, Lorestan University, Khorramabad, Iran

5 Associate Professor, Department of Water Engineering. Faculty of Agriculture, Lorestan University, Khorramabad, Iran

چکیده [English]

Extended Abstract
 
Introduction
Any structure that is in the flow path and establishes a simple, specific and definite flow relationship and depth around it is called a flow controller. Weirs are structures that raise the water level behind them and create control sections and are simple means of measuring discharge. Bazin & Schwalt (1898) were the first to conduct experiments on rectangular broad crested weirs. Since then, many researchers have done a great deal of research on a variety of weirs. Among them we can mention: Woodburn (1932), Tracy(1957), Smith(1959), Abou-seida & Quraishi (1976), Hager&Schwalt (1994), Sargison & Percy (2009),….
Due to the importance of flow measurement in open channels, the purpose of this study was to investigate the hydraulic performance of inclined weir, to determine the discharge conveyancecoefficient in this kind of structures in free and submerged flow condition, and to provide relationships to predict the discharge conveyancecoefficient.
 
Methodology
Based on Equation 1, we can determine the weir discharge.
In this equation Q is the discharge (m3 / s), Cd is the discharge coefficient (no dimension), B is the weir length (m), g is the acceleration (m / s2), and H is the height of the water over the weir (m).Also rewrite from the equation 1 to form 2 by defining it   as the discharge conveyancecoefficient (Mohamed, 2010):
In this study, the equation 2 is based on the calculation of the discharge throughput on weirs. The following two equations for free and submerged flow are presented using dimensional analysis.
The experiments were conducted in a plexiglass flume (Fig. 1) made of the British ArmField Company with a length of 15 m, a width of 30 cm and a height of 50 cm. A total of 60 experiments (30 free-flow and 30 submerged-flow experiments) were performed on the inclined weir.
 
Results and Discussion
A) Free flow condition
In this series of experiments, with increasing H/Lw ratio, the discharge conveynce coefficient of all three sloping weirs increased, but the coefficient of conveynce discharge of rectangular broad crested weir decreased (Fig. 1).
This figure shows that among inclined weirs are most sensitive to H/Lw changes.Also comparison of the inclined weir with the rectangular broad crested weir indicates that the rectangular broad crested weir later is less sensitive to H/Lw. Equation 5 was derived to calculate the discharge conveyancecoefficient (Cf) in inclined weirs under free-flow conditions.
B) Submerged flow condition
Multiple regression was used to investigate the interaction of the extracted dimensionless parameters on the discharge conveyancecoefficient and to provide a mathematical relation to predict these values. Equation 6 was derived to calculate the Cs coefficient in inclined weirs under submerged flow conditions.
Figure 2 shows the computational and observational Cf, Cs in free and submerged flow conditions. The scattering of these points relative to the 45 ° line shows that the correlation coefficient of the experimental and computational values for free and submerged flow are equal to 0.9 and 0.91 respectively.
 
Conclusions
The results show that:
- Increasing in H/Lw ratio leads increases in discharge conveyance coefficient of all three sloping weirs and decreases in rectangular broad crested weir.
- For a constant value of the H/Lw ratio, the highest discharge coefficient is related to the upstream and downstream slope weir model (SCW-UD-1) and the lowest discharge coefficient is to the upstream slope weir model (SCW-U-1).
-The upstream and downstream slope weir are most sensitive to H/Lw changes and rectangular broad crested weir is less sensitive to changes in H/Lw ratio.
- As the H/p < /em> ratio increases, the discharge conveyance coefficient of all three sloping weir models increases.

کلیدواژه‌ها [English]

  • Discharge Conveyance Coefficient
  • Height to Width Weir Ratio
  • Water Surface Profile
Abdollahpour, M., & Salmasi, F. (2013). Analysis and investigation of the discharge coefficient in rectangular board-crested weirs. 7th National Congress on Civil Engineering (7,8 May). Zahedan, Iran. (in Persian)
 
Abou-Seida, M. M., & Quraishi, A. A. (1976). A flow equation for submerged rectangular weirs. Proceeding of ICE, 61(4), 685-696.
 
Babaei, E., Karami, H., & Farzin, S. (2019). Numerical investigation of flow characteristics horizontal sharp edge triangular weir with vertex at downstream. Journal of Irrigation and Water Engineering, 9(3), 49-65. (in Persian)
 
Bazin, H., & Schwalt, K. (1898). Experiences nouvelles sur l’ecoulement en deversoir. Annual Ponts Chaussees, 68(2), 151-265.
 
Ghomshei, M., & Emamgholizadeh, S. (2008). An Introductory Book to Fluid Mechanics & Hydraulic. Shahid Chamran Uni of Ahvaz Publications. (in Persian)
 
Ghorbani-Dashtaki, S., Homaee, M., Mahdian, M. H., & Kouchakzadeh, M. (2009). Site-dependence performance of infiltration models. Water Resources Management,23, 2777-2790.  DOI 10.1007/s11269-009-9408-3.
 
Hager, W. H., & Schwalt, M. (1994). Broad-crested weir. Journal of Irrigation and Drainage Engineering, 120(1), 13-26.
 
Madadi, M., & Hoseinzadeh-Dalir, A., & Farsadizadeh, D. (2012). Influence of longitudinal trapezoidal weirs upstream slope on discharge coefficient and stage- discharge curve. 14th Iranian Hydraulics Conference (6 Nov.).  Orumieh, Iran. (in Persian)
 
Meshkavati, J., Emadi, A., & Masoudian, M. (2017). Experimentally investigation of discharge coefficient at trapezoidal labyrinth weirs. Iranian Journal of Irrigation and Drainage, 11(5), 852-864. (in Persian)
 
Mohamed, H. I. (2010). Flow over Gabion Weirs. Journal of Irrigation and Drainage Engineering, 136, 573-577.
 
Sargison, J. E., & Percy, A. (2009). Hydraulics of board-crested weirs with varying side slopes. Journal of Irrigation and Drainage Engineering, 135(1), 115-118.
 
Shafai-Bejestan, M. (2012). Fundamentals and Applications of Hydraulic and Physical Models. Shahid Chamran University Press(in Persian)
 
Shariati, H., & Khodashenas, S. R. (2016). Experimental study of discharge coefficient of parabolic sharp-crested weirs. Water and Soil Science Journal. 26(3), 57-67. (in Persian)
 
Shokri, N., Farhoudi J., & Goodarzi, E. (2008). The effect of downward and upward slope of the rectangular edge of the broad edge on the flow conditions. Journal of Faculty of Engineering, University of Tabriz, 37(3), 9-19. (in Persian)
 
Smith, R. A. (1959). Calibration of a submerged board-crested weir. Journal of Hydraulic Division, 85(3), 1-16.
 
Tracy, H. J. (1957). Discharge Characteristic of Board Crest Weirs. Circular 397. Geological Survey. U.S Department of Interior. Washington.
 
Woodburn, J. G. (1932). Tests of Board-Crested Weirs. Transaction of the ASCE, 1797, 387-416.