نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه مهندسی آب دانشگاه رازی، کرمانشاه، ایران

2 کارشناسی ارشد گروه مهندسی آب دانشگاه رازی

3 استادیار گروه مهندسی آب دانشگاه رازی، کرمانشاه، ایران

چکیده

به­ منظور طراحی بهینه ایستگاه پمپاژ و خط انتقال آن، یک مدل­ کامپیوتری توسعه داده­ شد. در این مدل مجموع هزینه­ های جاری و ثابت طرح بر مبنای بهینه‏ سازی به­ روش الگوریتم ژنتیک دودویی با رعایت محدودیت­های سرعت و فشار کمینه می­شود. مشخصات هیدرولیکی و اقتصادی لوله‏ ها و پمپ‏های موجود در بازار ایران به عنوان یک بانک اطلاعاتی و فایل داده برای مدل تعریف شده است. بعد از طراحی بهینه سیستم با هدف کنترل ایمنی سیستم از نقطه نظر ضربه قوچ محاسبات مربوط به شبیه سازی جریان غیر ماندگار در محیط ­کاری مدل نیز انجام می­شود. پس از صحت سنجی مدل، طراحی خط انتقال و ایستگاه پمپاژ سد خارج از بستر بیستون کرمانشاه مورد بررسی قرار­گرفت. نیمرخ طولی مسیر، دبی انتقالی، محدوده­ های مجاز فشار و سرعت، پارامترهای الگوریتم ژنتیک و همچنین پارامترهای اقتصادی برای مدل تعریف شد. پس از اجرای مکرر مدل نهایتاً نتایج بهینه بدست آمد. خروجی مدل نشان داد برای انتقال آب با دبی 3500 لیتر بر ثانیه در طول 6 ماه از سال (آذر تا اردیبهشت) از رودخانه گاماسیاب به سد خارج از بستر بیستون استفاده از لوله فولادی به قطر 1600 میلی‌متر و پمپ گریز از مرکز  مدل 200-50-500 کمترین هزینه را در طی 20 سال عمر مفید پروژه تحمیل می نماید. همچنین نتایج شبیه سازی ضربه قوچ سیستم بهینه نشان داد مخزن هوا با شعاع 3 متر و ارتفاع حدود 5/5 متر خط لوله را از نقطه نظر ضربه قوچ  ناشی از قطع ناگهانی ایستگاه پمپاژ ایمن نگه می دارد. علاوه بر این لازم است این مخزن در شرایط اولیه تا نیمه پر از آب بوده و فشار هوای بالای آن حدود 86 مترباشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Development of the Optimal Design Model of Water Transmission Pipeline Using Genetic Algorithm (Case Study: Conveyance Line of Outside of River Bed Biston Dam)

نویسندگان [English]

  • rasu; Ghobadian 1
  • sara hshmati 2
  • seyed ehsan fatemi 3

1 Associate Professor, Department of Water Engineering, Razi University, Kermanshah, Iran.

2 Department of water engineering Razi university

3 Department of water engineering, , Razi University

چکیده [English]

Extended Abstract
 
Background and Objectives: Due to the high cost of designing, construction and operation of dam reservoirs and related facilities, Optimization in the construction of reservoirs and related facilities to increase productivity and reduce costs has been considered by designers. In this regard, the development of computer software can be a great help to design engineers in such a way that boring manual calculations and calculation errors are reduced For this purpose, the main goal of the present study is to prepare and develop a computer model based on  genetic algorithm in which the objective function that is the sum of  the fixed and current costs of the transmission system during the useful life of the project, considering the velocity and pressure constrain was minimized.  Simulation water hammer in the optimal system with and without control facilities is one of the secondary goals of this research.
 
Materials and Methods: In this study, the optimal design of the pumping station and transmission line is performed based on optimizing using the binary genetic algorithm with the objective function of minimizing fixed and current costs of the transmission system and pumping station during the useful life of the project. The study area is the pump station and water transmission line of Biston dam that is located in the outside of Gamasiab river bed in Kermanshah province. In order to optimize the unit length price of 24 pipes of different materials from nominal diameter 110 to 2000 mm as well as the specifications of all domestic manufacturing pumps and some imported pumps were defined as a database in the model.  The type of pump and suitable pipes of conveyance line are selected by minimizing the cost function by observing the pressure and velocity constraints.
 
Result: Model validation results in design of conveyance line by three case: 1- Reservoir - pipe system with end valve, 2- Pipeline with side branches on the slope and 3- Transmission line between two points with irregular topography indicated that the model optimize the transmission line by observing the pressure and velocity constraints in such a way that even in the design of a part of transmission line that placed on downhill slop (case 3) by selecting the optimal smaller diameter prevent overpressure along the transmission line. Then results of the design of the Biston Dam transmission line showed that the diameter of the 1600 mm steel transmission pipe and the centrifugal pump model of 200-50-500 have the lowest cost during useful life of 20 years. The water hammer simulation results on optimal system showed that an Air chamber with a radius of 3 meters and a height of about 5.5 meters that in the initial conditions, it is half full of water and its air pressure is about 86, It keeps the pipeline safe from the point of view of water hammer and sudden shutdown of the pumping station.
 
Conclusion: Reducing the constant and annual costs of conveyance line and pumping station of outside of river bed dams as much as possible can be effective in the economic explanation of the projects. In this research, in order to reduce the mentioned cost, optimal design of conveyance line and pumping station of outside of river bed Biston dams was considered. In this project it is necessary to transfer 3500 l/s water from Gamasyab river to Biston dam reservoirs during 6 months of the year (November to May) by the optimal transmission pipe line. For this purpose, a computer model was prepared and developed in which based on optimization by binary genetic algorithm method the transmission system is optimized. Model validation was performed using it for optimal design of several different cases and successful results were obtained. Then the optimization of the Biston dam transmission line was done. The result showed that use of 21 centrifugal pump model of 200-50-500 devices (84% efficiency and 78.5 m operating pressure) with steel pipe with a diameter of 1600 is optimal along the entire path. In this situation, the cost of purchase and piping the Biston water transfer project is 1,681,952$.

کلیدواژه‌ها [English]

  • Pump station
  • Optimization
  • Genetic algorithm
  • Outside of river bed Biston dam
  • Water hammer
Abdan Faraz Consulting Engineers. (2015). Bistoon Reservoir Dam and water conveyance systems, Kermanshah Regional Water Authority company. (In Persian)
Akbarimoghadamgheyebashi, A., Razizadeh, F. & Saarzghadim, Y. (2011). Economic evaluation of dams outside the main riverbed, Case study of arsbaran dam, 30th Earth Science Conference, Tehran, 10 January .2011,  https://civilica.com/doc/182378. (In Persian)
Barlow, E. & Tanyimboh, T. (2014). Multi objective genetic algorithm applied to the optimization of water distribution systems. Water Resource Management. 28(2). pp.  2229 –2242
Colebrook, C.F., & White, C.M., (1937). The reduction of carrying capacity of pipes with age, Journal Institute of Civil Engineering, 7(1), pp.99-118.
Coelho, B., Tavares, A. & Andrade-Campos, A., (2012). Analysis of diverse optimisation algorithms for pump scheduling in water supply systems, Proceedings of 3rd International Conference on Engineering Optimization (EngOpt2012), July, Rio de Janeiro, Brazil.
Daneshfaraz, R. & Ghafarinike, A. (2014). Investigation of the consequences of placing the dam outside the main river bed: A case study of Mahabad dam, National Conference on the Use of New Technologies and Technologies of Design, Calculation and Execution in Civil Engineering, Architecture and Urban Planning, Maragheh, Iran, 18 April 2014 https://civilica.com/doc/465217. (In Persian)
El-Turki, A. 2013. Modeling of hydraulic transients in closed conduits. MSc Thesis, University of Fort Collins, Colorado, USA
Ghobadian, R., Fatemi, S. & Hazeri, A. (2018). Numerical investigating of water hammer on optimal design of sprinkler irrigation network. Iran Water Resources Research. 14(2). pp. 69-81. (In Persian)
Ghobadian, R., Hazeri, A. & Fatemi, S. (2018). Optimization of pressurized irrigation network pipe diameters using genetic algorithm based on integer numeric (Case study: Ismail Abad network in Lorestan). Journal of Water and Soil Conservation. 20(4). pp. 207-224. (In Persian)
Haaland, S. E.  (1983). Simple and explicit formulas for the friction factor in turbulent pipe flow. Journal of Fludis Engineering. pp. 89-90
Hashemi, S.S., Tabesh, M. & Ataeekia, B., (2014). Ant colony optimization of pumping schedule to minimize the energy cost using variable speed pump in water distribution networks, Urban Water Journal, 11(5), pp.334-347.
Jung, B.S. & Karney, B. (2014). Fluid transients and pipeline optimization using GA and PSO: The diameter connection. Urban water journal, 1(2). pp. 169-196.
Kale, R. V., Singh, R. P. & Mahar, P. S. (2008). Optimal design of pressurized irrigation subunit. Journal of Irrigation and Drainage Engineering, 134(2), pp. 137-146. ‏
Khoshfetrat, A. R., Daneshfaraz, R. & Behmanesh, J. (2018). Numerical comparison of various methods of transient flow calculation in water conveyance systems with pumping station. Journal of Water and Wastewater, 29(2), pp. 85-100. Doi: 10.22093/wwj.2017. 54595.2198. (In Persian)
Mackle, G., Savic, G.A. & Walters, G.A., (1995). Application of genetic algorithms to pump scheduling for water supply, First International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications (GALESIA), September 12-14, IET, 400-405.
Mansouri, R. & Torabi, H. (2018). Using Differential Evolution Algorithm for Optimizing and Modeling of Integrated Hydraulic and Water Resources (Case Study: The Central Plateau of Iran). Irrigation and Drainage Structures Engineering Research. 19(70), pp. 17-34. (In Persian)
Menke, R., Abraham, E., Parpas, P. & Stoianov, I. (2015). Approximation of system components for pump scheduling optimisation, Procedia Engineering, 119, pp.1059-1068.
Moinaldini, E., Mohamad Reza Pour, O. & Zeynali, M. (2018). Application of imperialist competitive algorithm in optimizations of pipe diameters for urban water network (Case study: Shahrdari town, Kerman). Water and Soil Science. 28(2), pp. 29-41. (In Persian)
Namdari, T.& Bidokhti, N. (2009). The calibration of Water Gems hydraulic analysis model using genetic algorithm, 3rd National Conference of Water and Wastewater in Iran. (In Persian)
Rohani, M.& Afshar, M. (2015). Optimal design of gravity pipeline systems using genetic algorithm and mathematical optimization. Journal of Water and Wastewater (parallel title); Ab va Fazilab. 26(1), pp. 107-118. (In Persian)
Shahi Nejad, B. (2011). Optimal design of irrigation networks using mixed integer linear programming. Ph.D. Thesis, Chamran University, Ahvaz. (In Persian)
Torabi, H., Goleij, H., Mirshahi, D. & Shahi Nejad, B. (2018). Irrigation networks optimization using expanded particle swarm algorithm and linear programming. Irrigation and Water Engineering. 8(2). pp. 187-199. (In Persian)
Triki, A., (2015). Water-hammer control in pressurized-pipe flow using an in-line polymeric short-section. Acta Mech, DOI: 10.1007/s00707-015-1493-1. Springer-Verlag Wien.
Valiantzas, J. D. (2002). Hydraulic analysis and optimum design of multi diameter irrigation laterals. Journal of irrigation and drainage engineering, 128(2), pp.78-86. ‏
Yghini, M. & Akhavan Kazemi, M.R. 2011. Meta-heuristic optimization algorithms. Amirkabir university of technology press, p.448. (In Persian)
Vitkovsky, J.P., Lambert, M.F., Simpson, A.R. & Bergant, A. (2000). Advances in unsteady friction modelling in transient pipe flow. The 8th International Conference on Pressure Surges, BHR, The Hague, The Netherlands, 12-14 April, 2000
Zhu, X. Zhang, C. Yin, J.  Zhou, H. & Jiang, Y. (2013). Optimization of water diversion based on reservoir operating rules: Analysis of the Biliu river reservoir. China. Journal of Hydrologic Engineering, 19(2), pp. 411-421.