نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی عمران، دانشگاه آزاد اسلامی واحد استهبان، ایران

2 فارغ التحصیل کارشناسی ارشد، گروه مهندسی عمران، دانشگاه آزاد اسلامی واحد استهبان، ایران

3 دانشیار گروه مهندسی عمران، دانشگاه آزاد اسلامی واحد استهبان، ایران

4 استادیار گروه کشاورزی، دانشگاه پیام نور، ایران

چکیده

عموما پایه پل ها به علت ملاحظات اقتصادی و ژئوتکنیک بر روی فونداسیون اجرا می گردد. اکثر مطالعات انجام شده پیرامون تغییرات زمانی آبشستگی، مربوط به پایه ها یکنواخت بوده و مطالعات کمتری در زمینه پایه های مرکب (پایه به همراه فونداسیون) دردست می باشد. نوآوری این تحقیق علاوه بر تعیین عمق بهینه قرار گیری فونداسیون، بررسی تغییرات زمانی آبشستگی در اطراف پایه های مرکب مستطیلی و همچنین تاثیر ابعاد پایه و فونداسیون بر عمق آبشستگی می باشد. در کلیه آزمایشها فونداسیون در زیر تراز بستر قرار گرفته و تحت شرایط آب زلال و با رسوبات یکنواخت با قطر متوسط 0.7 میلیمتر انجام شد. نتایج حاصله نشان می دهد که در تمامی حالات عمق آبشستگی در اطراف پایه های مرکب کمتر از پایه های یکنواخت می باشد. از طرفی در پایه های مرکب آبشستگی تا تراز فونداسیون گسترش یافته و سپس فونداسیون به عنوان مانعی برای مدت زمان مشخصی (زمان تأخیر) از پیشرفت آبشستگی جلوگیری می کند. زمان تأخیر و عمق آبشستگی به عرض پایه (L)، عرض فونداسیون (Lf) و همچنین تراز قرارگیری فونداسیون (Z) بستگی دارد. با افزایش تراز نسبی فونداسیون زیر بستر (Z/L)، میزان آبشستگی کاهش یافته تا به مقدار حداقل خود در تراز بین L تا L1.2برسد. از نتایج این تحقیق می توان به تاثیر حضور فونداسیون در تراز مناسب بر افزایش زمان تعادل آبشستگی و در نتیجه فراهم شدن زمان کافی برای تعمیرات فونداسیون پس از بروز سیل اشاره کرد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Temporal Variation of Local Scour at Complex Rectangular Pier

نویسندگان [English]

  • reza mohammadpour 1
  • Atefeh Taghi shahbazi 2
  • tooraj sabzvari 3
  • Mehdi Karami moghadam 4

1 Assistant professor Department of Civil Engineering, Islamic Azad University, Estahban Branch, Fars, Iran

2 Department of Civil engineering Estahban. Iran

3 Civil Engineering department, Islamic azad university, Estahban branch

4 Agriculture department, Payamnour university, Iran

چکیده [English]

Introduction
Due to geotechnical and financial reasons, actual piers are built on foundation, while there is limited number of study available about effect of the foundation on the local scour. Overestimation of the scour depth results in designing a deep foundation level and thus leads to an uneconomical design of bridges. However, the underestimation of scour depth would result in shallow foundation and providing a chance to expose the foundation to the flow. It is definitely dangerous for bridge safety. Previously, extensive research has been carried out about local scour around uniform piers. However, only some studies are available in literature to predict the time variation of local scour at complex piers.
In this study, time variation of local scour have been experimentally investigated around uniform and non-uniform rectangular piers under clear water conditions. The local scour is investigated with variation of foundation level (Z), pier dimension and foundation dimension. The results are compared at different foundation level.

Materials and Methods
A flume with rectangular cross section and the dimension of 12.0 m long, 0.4 m wide, and 0.6 m deep was chosen for all experiments. Three uniform and non-uniform rectangular piers were chosen for tests (Table 1). Uniform sediment with d50 = 0.70 mm maintain the clear water conditions, the flow velocity was set close to the critical velocity of sediment (U/Uc between 0.94 and 0.99).

Results and Discussion
The trend of local scour at non-uniform pier is time dependent. To investigate the effects of foundation level (Z) on temporal variation of local scour around pier, four levels of 0.0, 1.0, 2.0 .3.0 cm were chosen for Z. The experimental data and flow condition are given in Table 1. In this table, P and FP were selected for uniform and non-uniform piers, respectively. The scour depth develops to top of foundation quickly, and then the foundation postpones the scour development for a certain time (lag –time). It was observed that during of lag-time, the scour hole is slightly extended in parallel to and in front of the pier. In addition, development of local scour in parallel to pier (in the flow direction) is faster than those in front of abutment (upstream). The scour hole in the foundation nose is enlarged in the area, and it is somewhat deeper than other parts at the upstream side. The deepest depth at the upstream of non-uniform pier gradually develops around the sides of the foundation to create a shallow groove parallel to the foundation. Subsequently, the depth of the scour ahead of the foundation is more increased due to the formation of a vortex at upstream of the foundation. This vortex enlarges and deepens the scour at the corner of the foundation, and the sediments besides of the foundation are carried out to downstream of the abutment. Although, the foundation postpones development of scour depth firstly, but if the foundation exposes to the scour hole, the vortex in front of exposed foundation increases the scour depth. The lag-time (latency) directly depends on pier width (L), foundation width (Lf) and level of foundation under the sediment bed (Z). The rate of sediment transport decreases with increasing the scour hole dimension, and it will be stopped approximately close to the equilibrium scour depth. The reduction of scour depth due to lag –time is very useful to prevent the failure of bridge especially in the flood events that bridges are the main structures in transportation. Generally, the peak of flood may not be long-lasting to develop equilibrium scour depth and the flood may be stopped within lag-time. Therefore, the lag-time postpones the maximum scour depth and provides an opportunity to repair the bridge foundation after the flood events. Generally, For 0<Z/L1.2,the local scour increasing with increasing foundation level (Z) and for Z≥2.4L the local scour at compound pier is similar to uniform pier.


Conclusions
In this study, temporal variation of local scour at non-uniform piers is investigated experimentally under the clear water conditions. The non-uniform piers were included a rectangular pier founded on a larger rectangular pier. In all experiments, the scour depth is developed to top of foundation quickly, and then the foundation postpones the scour development for a certain time (lag–time). Duration of lag-time is depended on the dimension of pier, foundation size and the foundation level. A comparison between the uniform and non-uniform piers indicated that the trend of scour depth at non-uniform and uniform piers is similar to each other. This study highlights that a proper design of foundation level decreases the scour depth and increases the duration of scouring. Furthermore, the lag-time provides an opportunity to repair the bridge foundation after the flood events.

کلیدواژه‌ها [English]

  • Time variation of scour
  • Scour mechanism
  • Non-uniform pier
  • Foundation dimension
  • Foundation level
Arneson, L. A., Zevenbergen, L. W., Lagasse, P. F., and Clopper, P. E. (2012). Evaluating scour at bridges (HEC-18). Technical Rep. No. HIF-12-003, Federal Highway Administration, Washington, DCی
Ataie-Ashtiani, B. and Aslani-Kordkandi, A. (2013). Flow field around single and tandem piers. Flow, Turbulence and Combustion, 90(3), 471-4ی
Ataie-Ashtiani, B., Baratian-Ghorghi, Z. and Beheshti, A. A. (2010). Experimental Investigation of Clear-Water Local Scour of Compound Piers. Journal of Hydraulic Engineering-Asce, 136(6), 343-351.
Cardoso, A. H. & Fael, C. M. S. (2010). Time to equilibrium scour at vertical-wall bridge abutments. Proceedings of the Institution of Civil Engineers-Water Management, 163, 509-513.
Chabert, J. and Engeldinger, P. (1956). Etude des affouillements autour des piles de ponts. Serie A, Laboratoire National d’Hydraulique. Chatou, France (in French).
Coleman, S. E. (2005). Clearwater local scour at complex piers. Journal of Hydraulic Engineering- Asce, 131(4), 330-334.
Dey S, Raikar R. (2007) Characteristics of horseshoe vortex in developing scour holes at piers. J Hydraul Eng. 133(4), 399–413.
Ettema, R., Constantinescu, G. and Melville, B. W. (2011). Evaluation of Bridge Scour Research:Pier Scour Processes and Predictions. NCHRP 24-27(01), Transportation Research Board, Washington, DCی
Ferraro, D., Tafarojnoruz, A., Gaudio, R., and Cardoso, A. H. (2013). Effects of pile cap thickness on the maximum scour depth at a complex pier. J. Hydraul. Eng ی (ASCE) HY.1943-7900.0000704, 482 – 491ی
Ghani, A. A. and Mohammadpour, R. (2015). Temporal variation of clear-water scour at compound Abutments. Ain Shams Engineering Journal, http://dx.doi.org/10.1016/j.asej.2015.07.005
Graf, W. H. and Istiarto, I. (2002). Flow pattern in the scour hole around a cylinder. Journal of Hydraulic Research, 40(1), 13-20.
Jones, J. S., Kilgore, R. T. and Mistichelli, P. (1992). Effects of Footing Location on Bridge Pier Scour. Journal of Hydraulic Engineering, 118(2), 280-289.
Lança, R., Fael, C., Maia, R., Pêgo, J., and Cardoso, A. (2013). Clear-water scour at comparatively large cylindrical piers. J. Hydraul. Eng.,10.1061/(ASCE)HY.1943-7900.0000788, 1117 –1125.
Lu, J.-Y., Shi, Z.-Z., Hong, J.-H., ee,.-J., and Raikar, V. K. (2011). Temporal variation of scour depth at nonuniform cylindrical piers. J. Hydraul. Eng.,10.1061/(ASCE)HY.1943-7900.0000272, 45–56ی
Melville, B. W. (1992). Local Scour at Bridge Abutments. Journal of Hydraulic Engineering-Asce, 118(4), 615-631.
Melville, B. W. and Raudkivi, A. J. (1996). Effects of foundation geometry on bridge pier scour. Journal of Hydraulic Engineering-Asce, 122(4), 203-209.
Melville, B. W. & Coleman, S. E. (2000(. Bridge scour, Water Resources Publications, Highlands Ranch, Colo.
Melville, B. W. & Sutherland, A. J. (1988). Design method for local scour at bridge piers. Journal of Hydraulic Engineering, 114, 1210-1226.
Mohammadpour, R., Ghani, A. A. & Azamathullah, H. M. 2011. Estimating time to equilibrium scour at long abutment by using genetic programming. 3rd International Conference on Managing Rivers in the 21st Century, Rivers 2011. Penang, Malaysia.
Mohammadpour, R., Ghani, A. A. and Azamathulla, H. M. (2013). Estimation of dimension and time variation of local scour at short abutment. International Journal of River Basin Management, 11(1), 121-135.
Mohammadpour, r., ab. Ghani, a. & azamathulla, h. M. (2013). Prediction of equilibrium scour time around long abutments. Proceedings of the Institution of Civil Engineers: Water Management, 166, 394-401.
Mohammadpour, R., Ghani, A. A., Zakaria, N. A. and Ali, T. a. M. (2015b). Predicting scour at river bridge abutments over time. Proceedings of the Institution of Civil Engineers - Water Management, 0(0), 1-16.
Mohammadpour, R., Ghani, A. and Zakaria, N. (2014). Time variation of scour depth around complex abutment. Scour and Erosion: Proceedings of the 7th International Conference on Scour and Erosion, Perth, Australia, 2-4 December 2014, 2014. CRC Press, 455-460.
Mohammadpour, R., Ghani, A., Vakili, M. and Sabzevari, T. (2015a). Prediction of temporal scour hazard at bridge abutment. Natural Hazards, 10.1007/s11069-015-2044-8, 1-21.
Mohammadpour, R., Ghani, A. A., Zakaria, N. A. & Thamer, A. M. A. (2017). Predicting scour at river bridge abutments over time. Proceedings of the Institution of Civil Engineers - Water Management, 170, 15-30.
Mohammadpour, R., Ghani, A. A., Sabzevari, T. & Fared murshed, M. (2019). Local scour around complex abutments. ISH Journal of Hydraulic Engineering, 1-9.
Oliveto, G. & Hager, W. H. 2002(. Temporal evolution of clear-water pier and abutment scour. Journal of Hydraulic Engineering-Asce, 128, 811-820.
Moreno, M., Maia, R. and Couto, L. (2016). Prediction of Equilibrium Local Scour Depth at Complex Bridge Piers. Journal of Hydraulic Engineering, 142(11).
Parola, A. C., Mahavadi, S. K., Brown, B. M. and Elkhoury, A. 1996. Effects of rectangular foundation geometry on local pier scour. Journal of Hydraulic Engineering-Asce, 122(1), 35-40.
Richardson, E. V., Davis, S. R. (2001). Evaluating scour at bridges. Hydraulic Engineering Circular No. 18 (HEC-18), 4th Ed., Rep. No.FHWA NHI 01-001. Federal Highway Administration, Washington,D.C.
Sheppard, D. M. and Renna, R. (2005). Florida bridge scour manual. Florida DOT, Tallahassee,Fla.
Yanmaz, A. M. and Altinbilek, H. D. (1991). Study of Time-Dependent Local Scour around Bridge Piers. Journal of Hydraulic Engineering-Asce, 117(10), 1247-1268.