نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه عمران، واحد بین المللی کیش، دانشگاه آزاد اسلامی، جزیره کیش، ایران

2 استاد گروه سازه های آبی، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران

3 استادیار گروه عمران دانشگاه آزاد واحد رودهن، تهران، ایران

چکیده

امروزه لوله‌های پلیمری به‌علت برتری‌های قابل‌ملاحظه فنی و اقتصادی نسبت به سایر لوله‌ها با روند رو به رشدی در سیستم‌های آبرسانی عمومی و صنعتی و انتقال فاضلاب در سراسر دنیا استفاده می‌شوند. این موضوع لزوم شناخت رفتار سازه‌ای و عملکرد هیدرولیکی لوله‌های پلیمری و تأثیرات خواص ویسکوالاستیک بر نحوه تشکیل و میرایی موج فشار را بیش‌ازپیش ضروری می‌سازد که سبب ارائه طرح‌های بهینه از منظر اقتصادی و فنی خواهد شد. برای بررسی این موضوع از یک مدل آزمایشگاهی خطوط لوله انتقال پلی‌اتیلن در آزمایشگاه هیدرولیک دانشگاه شهید چمران اهواز استفاده شد. نتایج نشان داد بلافاصله پس از بستن سریع شیر ضربه‌قوچ، یک پیک فشاری قابل توجه و به دنبال آن یک افت ناگهانی در سیگنال فشار قابل‌مشاهده است. چنانچه محاسبات بر اساس مدول الاستسیسته ارایه شده توسط کارخانه انجام شود حتی با فرض الاستیک بودن لوله، مقدار اضافه فشار حدود 6/16 تا 65/37 درصد کمتر از مقدار واقعی می باشد. به ‏دلیل تغییر شکل‌های تأخیری دیواره لوله، امواج فشاری به‌سرعت میرا شده و با گذشت زمان از شروع جریان گذرا، تأخیر زمانی آن بیشتر می‌شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Experimental Analysis of Viscoelastic Transmission Pipe System Under Transient Flow

نویسندگان [English]

  • Iraj Rezapour 1
  • Mahmood Shafai Bajestan 2
  • Babak Aminnejad 3

1 Department of Civil Engineering, Kish International Branch, Islamic Azad University, Kish Island, Iran

2 Professor, Department of Water Structures, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

3 Assistant Professor, Department of Civil Engineering, Roudehen Branch, Islamic Azad University, Roudehen, Iran.

چکیده [English]

Introduction
Transient flow in a pressurized pipe system is an intermediate state flow that arises between one constant flow and another. In other words, whenever the flow conditions change from a steady-state due to any deliberate or accidental disturbance, a transient flow is created in the pipeline (Chaudhry, 2014). This phenomenon is one of the most severe cases of damage in pressurized pipelines.
In many previous studies related to transient flow analysis, the pipe wall has been made of metal and concrete materials with elastic mechanical behavior. In recent years, the increasing use of plastic pipes (such as polyethylene and PVC) has led to the development of mechanical models of transient flow, taking into account the viscoelastic behavior of these materials.
In recent years, polymer pipes such as polyethylene and PVC, due to their technical and economic advantages over other pipes such as steel, cast iron, concrete, and asbestos, have increased day by day. This makes the need to understand the structural behavior and hydraulic performance of polymer pipes even more urgent. The modeling method of polymer pipes for transient flows analysis has several fundamental differences from non-polymer pipes. These differences are mainly related to the interaction of fluid fluctuations with the characteristics of pipe wall structures. Polymers generally exhibit viscoelastic mechanical behavior that affects the intensity, formation, and damping of pressure fluctuations in transient currents. In these equations, it is usually assumed that the pipe wall is made of concrete and metal and has a linear elastic behavior. In comparison, polymer pipes have inelastic behavior.
The present study aims to investigate the pressure response of viscoelastic pipeline under transient flow. For this purpose, first, the pressure signal's initial peak and the effects of line packing are investigated. The effect of the transient valve's closing time in different flows on the pressure signal is investigated in the following. Another important issue is the overpressure. In this research, laboratory values of overpressure are compared with the theoretically calculated values.

Methodology
The laboratory model of this research was designed and built in the hydraulic laboratory of the Faculty of Water Engineering, Shahid Chamran University of Ahvaz, to evaluate the response of the viscoelastic pipeline system under transient flow. The pipes are high-density polyethylene (HDPE) (SDR11, PE100, NP16) with a length of 158 meters, an inner diameter of 5.05 cm, and a thickness of 6.5 mm. According to the four stages of waterhammer, if the constant pressure of the pipeline is low, the pressure signal in the third stage, after returning from the tank and reaching the transient flow valve, enters pressures less than the vapor pressure of the fluid, and due to the column separation. This phenomenon reduces the pressure signal capability to detect other system malfunctions. To avoid this problem, a pressurized reservoir was used as the upstream boundary condition at the pipe system's upper boundary.

Results and Discussion
The initial peak pressure due to the effects of friction and fluid inertia and the delayed deformation of the pipe wall is completely weakened in the first period of the pressure wave and does not exist in subsequent periods. The transient flow signal analysis showed that the classical waterhammer equation could not predict the observed maximum transient pressure of fast transient in polyethylene pipe. The calculation of the wave speed in polyethylene pipes based on the modulus of static elasticity is significantly less than that of elasticity's dynamic modulus. As the valve's closing time increases, their maximum pressure peaks and pressure drop gradients decrease, and this peak gradually weakens and disappears. In addition, depending on the time difference between closing the valve, the pressure wave will have a time delay. The results showed that a significant energy drop with phase change in the pressure wave is observed in all measurement locations.

Conclusions
After quickly closing the transient valve, a significant pressure peak is observed, followed by a sudden drop in the pressure signal. At a constant flow, the initial peak pressure decreases with increasing valve closing time. Suppose the calculations are based on the modulus of elasticity provided by the factory. Even if the elastic tube is assumed, the amount of overpressure is 16.6 to 37.65% less than the actual value.This is an important reason to consider polymer pipes' viscoelastic behavior by precision transient flow hydraulic models or to consider the dynamic modulus of elasticity, sometimes up to twice the static modulus of elasticity proposed by manufacturers, in the design phase.

کلیدواژه‌ها [English]

  • Overpressure
  • pipelines
  • Pressure response
  • pressure wave speed
  • waterhammer
Brinson, H.F., & Brinson, L.C. (2008). Polymer Engineering Science and Viscoelasticity, an Introduction. Springer.
Brunone, B. (1999). Transient test based technique for leak detection in outfall pipes. Journal of Water Resources Planning and Management, ASCE, 125 (5), 302-306.
Brunone, B., Karney, B., Mercarelli, M., & Ferrante, M. (2000). Velocity profiles and unsteady pipe friction in transient flow. Journal of Water Resources Planning and Management, ASCE, 126(4), 236-244.
Chaudhry, M.H. (2014). Applied Hydraulic Transients. Springer New York. (pp. 503).
Covas, D. (2003). Inverse Transient Analysis for Leak Detection and Calibration of Water Pipe Systems- Modelling Special Dynamic Effects. PhD Thesis, Imperial College of Science, Technology and Medicine, University of London, London, UK.
Covas, D., Stoianov, I., Mano, J., Ramos, H., Graham, N., & Maksimovic, C. (2004). The dynamic effect of pipe-wall viscoelasticity in hydraulic transients, Part I—Experimental analysis and creep characterization. Journal of Hydraulic Research, IAHR, 42(5), 516–530.
Covas, D., Stoianov, I., Mano, J., Ramos, H., Graham, N., & Maksimovic, C. (2005). The dynamic effect of pipe-wall viscoelasticity in hydraulic transients, Part II—Model development, calibration and verification. Journal of Hydraulic Research, IAHR, 43(1), 56–70.
Evangelista, S.A., Leopardi, R., Pignatelli, G., & Marinis, G. (2015). Hydraulic transients in viscoelastic branched pipelines. Journal of Hydraulic Engineering, ASCE, 141(8), 1-9.
Fox, G.L.Jr., & Stepnewski, D. (1974). Pressure wave transmission in a fluid contained in a plastically deforming pipe. Journal of Pressure Vessel Technology, Trans. ASME, 96(4), 258-262.
Haghighipoor, S., Fathimoghadam, M. (2013) Evaluation of Transient Hydraulic Flow in Flexible Pipe Line. Journal of Irrigation Sciences and Engineering (JISE). 36(4), 39-50. (in Persian)
Jonsson, L. (1995). Leak Detection in Pipelines using Hydraulic Transients – Laboratory
Measurements. University of Lund, Sweden, Lund.
Joukowsky, N. (1904). Waterhammer (Mem. Imp. Acad. Soc. St. Petersburg, 1898) (translation
by O. Simin). Proceedings of American Water works Association. 24, 341-424.
Larson, M., & Jonsson, L. (1991). Elastic properties of pipe materials during hydraulic transients. Journal of Hydraulic Engineering, ASCE, 117(10), 1317-1331.
Marshall, G.P., Brogden, S., & Shepherd, M.A. (1998). Evaluation of surge and fatigue
resistance of poly (vinyl chloride) and polyethylene material for use of the UK water
industry. Plastics, Rubber and Composites Processing and Appllication. 27(10), 483-488.
MeiBner, E., & Franke, G. (1977). Influence of pipe material on the dampening of waterhammer. Proceedings of the 17th Congress of the International Association for Hydraulic Research, Pub. IAHR, Baden-Baden, F.R. Germany.
Mitosek, M., & Roszkowski, A. (1998). Empirical study of waterhammer in plastic pipes. Plastics, Rubber and Composites Processing and Applications. 27(7), 436-439.
Pezzinga, G. (2002). Unsteady flow in hydraulic networks with polymeric additional pipe. Journal of Hydraulic Engineering, ASCE, 128(2), 238–244.
Rahmanshahi, M. (2017) Leak detection in viscoelastic series pipeline in time domain. Ph.D. thesis, Shahid Chamran University of Ahvaz, Ahvaz, Iran. (in Persian)
Suo, L., & Wylie, E.B. (1990). Complex wave speed and hydraulic transients in viscoelastic pipes. Journal of Fluid Engineering, Trans. ASME. 112, 496–500.
Watters, G.Z., Jeppson, R.W., & Flammer, G.H. (1976). Waterhammer in polyvinyl chloride and reinforced plastic pipe. Journal of the Hydraulics Division, ASCE. HY7, 831-843.
Williams, D.J. (1977). Waterhammer in non-rigid pipes: precursor waves and mechanical dampening. Journal of Mechanical Engineering, Trans. ASME. 19(6), 237-242.
Wineman, A.S., & Rajagopal, K.R. (2000). Mechanical Response of Polymers: an introduction. Cambridge University Press.
Wylie, E.B., Streeter, V.L., & Suo, L. )1993(. Fluid Transients in Systems. Englewood Cliffs, NJ: Prentice Hall. pp. 463.