نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی‌ ارشد آبیاری و زهکشی؛ گروه آبیاری و آبادانی پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

2 استاد گروه آبیاری و آبادانی پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

3 استادیار گروه علوم و مهندسی آب، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین‌المللی امام خمینی (ره)، قزوین، ایران

چکیده

یکی از عوامل تهدیدکننده برای منابع آب شیرین، پیشروی آب شور و نفوذ آن به سفرۀ آب زیرزمینی است. برای کنترلاین پدیده، در این پژوهش سه راهکار زهکش حائل زیرزمینی، زهکش حائل روباز و پردۀ آب‌بند با استفاده از مدل واسنجی شده HYDRUS_2Dبررسی و ارزیابی شد. نتایج بررسی­ها نشان داد محل قرار­گیری زهکش روباز و زیرزمینی اثر قابل توجهی روی خروج آب و املاح از مرز هر دو آبخوان شور و شیرین دارد. مشخص شد با تغییر محل زهکش از نزدیکی مخزن آب شور به مخزن آب شیرین، مقدار آب زهکشی شده با زهکش روباز و زیرزمینی به ترتیب 5/6 و 8/5 متر مکعب بر متر کاهش می­یابد، و در حالتی که زهکش روباز در فاصلۀ 90 سانتی‌متری از مخزن آب شیرین و عمق 5 سانتی‌متری از کف قرار داشته باشد، مقدار تبخیر از سطح خاک در کل مدت شبیه‌سازی بیشتر از مقدار تبخیر در حالت بدون زهکش است و باعث افزایش شوری در محیط بین دو آبخوان می­شود. مشاهده شد نصب پردۀ آببند تا عمقهای 55، 65 و 70 سانتیمتر به ترتیب باعث کاهش 6، 15 و 88 درصد ورود جریان آب شور می­شود. به­کارگیری روش‌ها استفاده شده در این پژوهش به منظور جلوگیری از پیشروی شوری، جوانب مختلف محیط زیستی در بر دارد و باید با توجه به شرایط هر منطقه و اهمیت آن یکی از راهکارهای موجود انتخاب شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigations and comparison of the ways to prevent saline water advancement in zones with shallow water table

نویسندگان [English]

  • hossein Rabbaniha 1
  • AbdolMajid Liaghat 2
  • masoud Soltani 3

1 MSc from Department of Irrigation & amp; amp; Reclamation Engineering, Campus of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.

2 . Professor in Department of Irrigation & Reclamation Engineering, Campus of Agriculture and Natural Resources, University of Tehran

3 Asistant Prof. Department of Water Sci. and Eng., Faculty of Agricultural and Natural Resources, Imam Khomeini International University, Qazvin, Iran

چکیده [English]

Extended Abstract
Investigations and comparison of the ways to prevent saline water advancement in zones with the shallow water table
Introduction
One of the threating factors to freshwater resources is the advancement of saline water and intrusion into the groundwater aquifer. This problem occurs in coastal zones and desert margins and reduces freshwater quality. Evaporation from the soil surface and the water table depth are factors affecting the salinity and salt distribution in the saturated and unsaturated zones. HYDRUS and the accompanying software package provide numerical models used to simulate the movement of water, solute and heat in a porous medium for saturated and unsaturated conditions. According to the existing reports on the ability of the HYDRUS model to simulate moisture and salinity, using it can help decide and consider how to prevent the salinity advancement.
Methodology
In this research, the advance of saline water with a concentration of 20 dS/m and a level of 25 cm towards freshwater with a concentration of 1 dS/m and a level of 10 cm in the domain of 360×70 cm is considered. Different scenarios were examined to prevent the progression of salinity using a validated model. The studied scenarios include inceptor pipe drainage, inceptor open drainage and subsurface barrier which were simulated using the HYDRUS-2D model. The parameter of the equations governing water flow and solute transport were estimated using observed moisture and salinity data and inverse solution tools in the HYDRUS-2D model. pipe and open drainage were considered at three distances of 270,180 and 90 cm from the freshwater reservoir and two depths of 15 and 5 cm from the impermeable layer. The effect of the subsurface dam on preventing the advance of saline water at three depths of 55, 65 and 70 were investigated.
Results and Discussion
Different scenarios of different drainage locations have been simulated to study salinity distribution and water table after 6 months. Regarding the location of the drainage site, three factors are important that have been studied: 1- The amount of water and salt outflow from the drainage 2- Controlling and preventing the advance of salinity 3- Its effect on the entry and exit of water from the freshwater aquifer. The location of surface and subsurface drainage showed different effects on salinity advancement. By changing the location of drainage from A to f the amount of drained water in pipe and open drainage decreased by 5.8 and 6.5 m3/m, respectively. Drainage location also affected actual evaporation from soil surface and salinity accumulation in the soil surface layer. In the cases of drainage where the lowest and highest evaporation from the soil surface occurs respectively, 15% difference was observed. In the case of open drainage at a distance of 90 cm from the freshwater reservoir and a depth of 5 cm from the impermeable layer, the amount of actual evaporation from the soil surface during the whole simulation period is greater than the actual evaporation in non-drained condition and also caused increased salinity between two reservoirs. The subsurface barrier has generally blocked the saline water flow only when it has reached the impermeable layer. The profile of the water table is broken due to very low hydraulic conductivity (about 0.1 m per day) when it reaches the subsurface barrier. The amount of failure and drop of the water table increased with increasing barrier depth.
Conclusions
The salinity distribution parameters in the area between two aquifers, discharged drain from drainage and its concentration and protection of freshwater aquifer are affected and can be considered according to the condition of each location. On the other hand, each of the scenarios has a positive and negative effect on these factors, so according to each sample and specific location, it must be decided how to prevent the progression of salinity (drainage or subsurface barrier) and their location.

کلیدواژه‌ها [English]

  • Groundwater
  • Hydraulic gradient
  • inceptor drainage
  • Salinity Front
Abd-Elaty, I., Abd-Elhamid, H. F., & Nezhad, M. M. (2019). Numerical analysis of physical dams’ systems efficiency in controlling saltwater intrusion in coastal aquifers. Environmental Science and Pollution Research26(35), 35882-35899.
Adegoke, J. A., Popoola, O. I., & Faluyi, O. O. (2013). Investigation of variation of diffusion coefficient in saltwater intrusion in porous media. Journal of Environmental Hydrology, 21
Chang, S. W., & Clement, T. P. (2012). Experimental and numerical investigation of saltwater intrusion dynamics in flux‐controlled groundwater systems. Water Resources Research, 48(9).
Chang, Y., Hu, B. X., Xu, Z., Li, X., Tong, J., Chen, L. & Ma, Z. (2018). Numerical simulation of seawater intrusion to coastal aquifers and brine water/freshwater interaction in south coast of Laizhou Bay, China. Journal of contaminant hydrology215, 1-10.
de Oliveira, L. A., Woodbury, B. L., de Miranda, J. H., & Stromer, B. S. (2020). Using electromagnetic induction technology to identify atrazine leaching potential at field scale. Geoderma, 375, 114525.
Ghorbani, K., Lee, T. S., Wayayok, A., & Boroomand Nasab, S. (2016). Interceptor Drainage Modelling to Manage High Groundwater Table on the Abyek Plain, Iran. Irrigation and Drainage, 65(3), 341-359.
Goswami, R. R., & Clement, T. P. (2007). Laboratory‐scale investigation of saltwater intrusion dynamics. Water Resources Research43(4).
He, W., Zhang, J., Yu, X., Chen, S., & Luo, J. (2018). Effect of runoff variability and sea level on saltwater intrusion: A case study of Nandu River Estuary, China. Water Resources Research, 54(12), 9919-9934.
Mehdizadeh, S. S., Ketabchi, H., Ghoroqi, M., & Hasanzadeh, A. K. (2020). Experimental and numerical assessment of saltwater recession in coastal aquifers by constructing check dams. Journal of Contaminant Hydrology, 103637.
Motallebian, M., Ahmadi, H., Raoof, A., & Cartwright, N. (2019). An alternative approach to control saltwater intrusion in coastal aquifers using a freshwater surface recharge canal. Journal of contaminant hydrology222, 56-64.
Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water resources research12(3), 513-522.
Noorabadi, S., Sadraddini, A. A., Nazemi, A. H., & Delirhasannia, R. (2017). Laboratory and numerical investigation of saltwater intrusion into aquifers. Journal of Materials and Environmental Sciences8(12), 4273-4283.
Rabbaniha, H., Liaghat, A., & Soltani, M. (2020a). Experimental study of shallow saline water and freshwater interference on distribution of salinity in the saturated and unsaturated zone using physical model. Iranian Journal of Irrigation & Drainage, 14(5), 1677-1685. (in Persian)
Rabbaniha, H., Liaghat, A., & Soltani, M. (2020b). Simulation of Saline and Fresh Water Interference in Saturated and Unsaturated Zones Using Physical and Hydrus-2D Model. Iranian journal of Ecohydrology, 7(4), 907-919. (in Persian)
Rathore, S. S., Zhao, Y., Lu, C., & Luo, J. (2018). Defining the effect of stratification in coastal aquifers using a new parameter. Water Resources Research, 54(9), 5948-5957.
Rice, K. C., Hong, B., & Shen, J. (2012). Assessment of salinity intrusion in the James and Chickahominy Rivers as a result of simulated sea-level rise in Chesapeake Bay, East Coast, USA. Journal of Environmental Management, 111, 61-69.
Selim, T., Bouksila, F., Hamed, Y., Berndtsson, R., Bahri, A., & Persson, M. (2018). Field experiment and numerical simulation of point source irrigation with multiple tracers. Plos one13(1), e0190500.
Šimůnek, J., Van Genuchten, M. T., & Šejna, M. (2012). The HYDRUS software package for simulating the two-and three-dimensional movement of water, heat, and multiple solutes in variably-saturated porous media. Technical manual.
Soltani, M., Rahimikhoob, A., Sotoodehnia, A., Mendicino, G., Akram, M., & Senatore, A. (2018). Numerical evaluation of the effects of increasing ratio of cropped to uncropped width on dry drainage efficiency in salty soils. Irrigation and Drainage, 67, 91-100.
Sotoudehnia, A., Jafarei, M., & Daneshkar Arasteh, P. (2014). The Role of Qazvin Central Marsh Interceptor Drain in Controlling Shallow Groundwater Salinity. Iranian Journal of Soil and Water Research, 45(4), 447-452. (in Persian)
Strack, O. D. L., Stoeckl, L., Damm, K., Houben, G., Ausk, B. K., & de Lange, W. J. (2016). Reduction of saltwater intrusion by modifying hydraulic conductivity. Water Resources Research, 52(9), 6978-6988.
Toller, E. A., & Strack, O. D. (2019). Interface Flow with Vertically Varying Hydraulic Conductivity. Water Resources Research, 55(11), 8514-8525.
Van Genuchten, M. T. (1980). A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil science society of America journal44(5), 892-898.
Wang, J., Huang, Y., Long, H., Hou, S., Xing, A., & Sun, Z. (2017). Simulations of water movement and solute transport through different soil texture configurations under negative‐pressure irrigation. Hydrological Processes, 31(14), 2599-2612.