نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد موسسه تحقیقات فنی و مهندسی کشاورزی، کرج، ایران

2 دانشیار مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسانرضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد، ایران

3 استادیار مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی صفی آباد، سازمان تحقیقات، آموزش و ترویج کشاورزی، ایران

4 مربی پژوهشی مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی فارس، شیراز، سازمان تحقیقات، آموزش و ترویج کشاورزی، ایران

5 استادیار مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی جیرفت، جیرفت، سازمان تحقیقات، آموزش و ترویج کشاورزی، ایران

6 استادیار مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی بوشهر، بوشهر، سازمان تحقیقات، آموزش و ترویج کشاورزی، ایران

7 استادیار مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی قزوین، قزوین، سازمان تحقیقات، آموزش و ترویج کشاورزی، ایران

8 دانشیار مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی زنجان، زنجان، سازمان تحقیقات، آموزش و ترویج کشاورزی، ایران

9 کارشناسی ارشد مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی هرمزگان، بندرعباس، ایران

10 استاد مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی گرگان، گرگان، سازمان تحقیقات، آموزش و ترویج کشاورزی، ایران

11 استادیار مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی اهواز، اهواز، سازمان تحقیقات، آموزش و ترویج کشاورزی، ایران

12 استادیار مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی شاهرود، شاهرود، سازمان تحقیقات، آموزش و ترویج کشاورزی، ایران

13 استادیار مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی همدان، همدان، سازمان تحقیقات، آموزش و ترویج کشاورزی، ایران

14 دانشیار مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی آذربایجان شرقی، تبریز، سازمان تحقیقات، آموزش و ترویج کشاورزی، ایران

چکیده

توسعة سامانه‌های نوین آبیاری یکی از برنامه‌های وزارت جهاد کشاورزی در چند دهة گذشته بوده است. ارزیابی نقش این سامانه‌ها در افزایش شاخص‌های مدیریت مصرف آب در بخش کشاورزی می‌تواند در سیاست‌گذاری‌ها و برنامه-ریزی‌های آیندة کشور موثر باشد. ازاین‌رو، این تحقیق با هدف تعیین شاخص‌های مدیریت مصرف آب در تولید گوجه-فرنگی در کشور و ارزیابی نقش آبیاری قطره‌ای نواری در افزایش آنها، انجام شد. حجم آب کاربردی و عملکرد محصول در 176 مزرعه که در قطب های تولید این محصول در فصل زراعی (98-1397) انتخاب و اندازه‌گیری شد. مقادیر اندازه‌گیری شده با نیاز خالص آبیاری حاصل از روش فائو پن‌من-مانتیث با استفاده از داده‌های هواشناسی و همچنین با مقادیر سند ملی آب مقایسه شدند. در ادامه نیز تاثیر روش‌ آبیاری قطره‌ای نواری) بر حجم آب کاربردی، راندمان کاربرد و بهره‌وری فیزیکی آب در مناطق مورد مطالعه بررسی شد. میانگین وزنی حجم آب کاربردی در مناطق مورد مطالعه 7729 مترمکعب بر هکتار بود. بهره‌وری آب در مناطق تولید از 33/4 تا 52/9 کیلوگرم بر مترمکعب متغیر بود و متوسط آن 10/7 کیلوگرم بر مترمکعب به دست آمد. میانگین نیاز خالص آبیاری و راندمان کاربرد آب در مزارع مورد مطالعه به‌ترتیب 674 میلی‌متر و 78 درصد بود. کاربرد آبیاری قطره‌‌ای نواری نقش موثری در افزایش شاخص‌های مدیریت مصرف آب در مقایسه با روش‌ آبیاری سطحی داشتند. آبیاری قطره‌ای نواری 25 درصد در کاهش آب کاربردی، 10 درصد در افزایش راندمان کاربرد آب در مزرعه و 16 درصد در ارتقای بهره‌وری آب موثر بوده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The Role of Modern Irrigation Systems on Tomato Applied Irrigation Water Management in Iran

نویسندگان [English]

  • Fariborz Abbasi 1
  • M. Jolaini 2
  • Mohammad Khorramian 3
  • E. Dehghanian 4
  • E. Moghbli 5
  • M. Nowroozi 6
  • Afshin Yousef Gomrokchi 7
  • M. Taheri 8
  • E. Zare Mehrani 9
  • A. Kiani 10
  • N. Salamati 11
  • syeed Hassan mousavifazl 12
  • Ali Ghadami Firouzabadi 13
  • P. Bayat 6
  • Abolfazl Nasseri 14

1 Professor of Agricultural Engineering Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.

2 AERI

3 Agricultural Engineering Research Institue, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

4 AERI

5 AERI

6 AREEO

7 Agricultural Engineering Research Institue, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

8 AREEO

9 AREEO

10 AREEO

11 AREEO

12 AREEO

13 Assistant Professor, Department of Agricultural Engineering Research, Hamedan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Hamedan, Iran

14 Agricultural Engineering Research Institue, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

چکیده [English]

The Role of Modern Irrigation Systems on Tomato Applied Irrigation Water Management in Iran


Introduction
Development of modern irrigation systems has been one of the main programs in developing agricultural sector in the past few decades. Assessing the role of these systems in increasing indicators of irrigation water management can play an important role in future national policies and planning. Therefore, this study was conducted with the aim of appraising water consumption management indicators in tomato production in different regions of Iran and evaluating the role of surface drip irrigation systems in increasing these indicators.

Methodology
In this study, a field survey was conducted to measure yield and applied irrigation water of tomato under the farmers’ management in tomato production hubs. Volume of applied water by farmers in 176 farms in Fars, South Kerman, Hormozgan, Bushehr, Khorasan Razavi, Qazvin, Khuzestan, Golestan, Zanjan, Hamedan and Semnan provinces with different conditions of climates, irrigation methods (furrows and drip), salinity of irrigation water and soil; and different tomato cultivars were measured during growing season 2018-2019. The measured applied irrigation water values were compared with the net irrigation requirements estimated by the FAO Penman-Monteith method using meteorological data from the last 10 years, as well as the values of the national water document. Then, the effect of modern irrigation methods (surface drip irrigation) on applied water, application efficiency and physical water productivity was investigated in the study areas. Crop yield was recorded at the end of the growing season and water productivity (WP) was calcucated as the ratio of yield to total applied water (irrigation water and effective rainfall). Analysis of variance was used to investigate the possible difference between yield, applied water and WP among the hubs. Data adequacy was assessed by using the method provided by Sarmad et al. (2001).

Results and Discussion
The results showed that yield, applied irrigation water and WP in tomato production hubs were significantly different at the P ≤ 0.01. The average volume of applied irrigation water by the farmers was 7729 m3/ha. Water productivity in production areas varied from 4.33 to 9.52 kg/m3 and its average was 7.10 kg/m3. The average net irrigation requirement and irrigation application efficiency were 674 mm and 78%, respectively. Irrigation application efficiency obtained from the studied tomato farms was slightly higher than the average irrigation efficiency in Iran reported by Abbasi et al. (2016). Deficit irrigation was occurred in the fields of some areas such as Bushehr, Golestan and Semnan. Tomato planting time (spring or autumn) affected applied irrigation water, yield and WP. The volume of water used in autumn planted farms (5356 m3/ha) was less than spring planted farms (9831 m3/ha). The average yield of tomatoes in spring planted farms (74.3 t/ha) was significantly higher than the yield of fields planted in autumn (46.1 t/ha). However, the average of WP in spring planting farms (7.7 kg/m3) was higher than the productivity of farms planted in autumn (6.6 kg/m3). The application of surface drip irrigation systems in comparison with furrow irrigation resulted in 25% reducing in applied water, 10% increasing the application efficiency and 16% improving in water productivity.

Conclusions
In general, the results of this study provide useful information on applied irrigation water management indicators in tomato production to managers and water decision makers within Iran. Proper development and management of drip irrigation systems for row crops such as tomatoes and autumn planting of tomatoes in warm tomato production hubs is recommended for effective use of autumn rainfall. Also, training and application of methods to improve the performance of surface irrigation (using methods to reduce evaporation and the use of low pressure systems) is recommended to increase irrigation efficiency and reduce applied irrigation water.

کلیدواژه‌ها [English]

  • Application Efficiency
  • Drip irrigation systems
  • Productivity
Abbasi, F., A. Nasseri, M.M. Nakhjavani Moghaddam. N. Salamati. M. Joleini, M. Khorramian, S.E. Dehghanian, A. Yousef Gomrokchi, A. Islami, K. Akhavan, M. Farzamnnia, J. Baghani, M. Akbari, 2018. Comparison of irrigation water management indices of silage maize in modern and conventional irrigation networks. 19(73): 143-156.
Abbasi, F., Sohrab, F. and Abbasi, N., 2016. Evaluation of irrigation efficiencies in Iran. Journal of Irrigation and Drainage Engineering Research, 17 (67), pp. 113-128. (In Persian).
Ahmadi, K., H.R. EbadZadeh, F. Hatami, H. AbdShah and A. Kazemian, 2019. Agricultural Statistics of 2017-2018. Ministry of Jihad for Agriculture, Deputy for Planning and Economy, Information and Communication Technology Office. Volume 1, Crops. 166pp.
Allen, R.G, L.S. Pereira, D. Raes, M. Smith, 1998. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirement. FAO Irrig. Drain. Paper No. 56. FAO, Rome, Italy, 300 pp.
Baghani, J., 2007. Production and efficiency of irrigation water consumption in sugar beet, potato, tomato and fodder corn crops in drip and surface irrigation methods. Research Report of Agricultural Engineering Research Institute, No. 1366/86.
Baghani, J., and. H. Bayat, 1999. Study and comparison of furrow and drip irrigation methods on tomato yield and quality. Research Report of the Agricultural Engineering Research Institute, No. 131.
Biswas, S.K., A.R. Akanda, M.S. Rahman, M.A. Hossain, 2015. Effect of drip irrigation and mulching on yield, water-use efficiency and economics of tomato. Plant Soil Environ, 61(3): 97–102.
Bogle, C.R., T.K. Hartz and C. Nunez, 1989. Comparison of subsurface trickle and furrow irrigation on plastic-mulched and bare soil for tomato production. J. Amer. Soc. Hortic. Sci., 114: 40-43.
Ewaid, S.H., S.A Abed, and N. Al-Ansari, 2019. Crop water requirements and irrigation schedules for some major crops in southern Iraq. Water, 11(4), 756.
FAO. 2020. The State of Food and Agriculture 2020. Overcoming water challenges in agriculture. Rome. https://doi.org/10.4060/cb1447en.
Farshi, A., M.R. Shariati, R. Jarollahi, M.R. Ghaemi, M. Shahabifar, and M.M. Tavallaei, 1997. An estimate of the water requirements  of  main  field  crops  and  orchards  in  Iran,  Orchards  Vol.  2.  Agricultural  Education  Publication: Karaj, Iran, 629.
Ghadami Firouzabadi, A., G.H. Asadian, A.M. Jafari and R. Bahramlo, 2020. Technical and economical evaluation of trickle irrigation systems (Tape) in the cucumber and tomato fields. Iranian J. Irrigation and Drainage, 14(1): 263-274.
Hall, B.J., 1974. Staked tomato drip irrigation in California. Proceedings of the Second International Drip Irrigation Congress, Page 480-486.
Hanson, B., and D. May, 2004. Effect of subsurface drip irrigation on processing tomato yield, water table depth, soil salinity, and profitability. Agricultural Water Management, 68: 1-17.
Jadhav, S., G.B. Gutal, and A.A. Chougule, 1990. Cost economic. 11th Internotional Congress on the Use of Plastics in Agriculture, New Dehly, India, pp:171-176.
Jolaini, M., 2011. Investigation the effect of different water and plastic mulch levels on yield and water use efficiency of tomato in surface and subsurface drip irrigation method. J. Water and Soil, 25(5): 1025-1032.
Khazaei, J., B. Amraei, S.M.J. Esfahani, 2016. Investigating the trend of changes in productivity of all factors of tomato production in Iran Using the Malmquist index. J. Agricultural Economics Research, 7(4): 83-98.
Khorramian, M., 2013. Effect of tape irrigation levels on yield and quality of tomato in north of Khouzestan province. J. Irrigation Sciences and Engineering, 38(2): 161-170.
Lin, S.S.M., J.N. Hubbell, S.C.S. Tsou, and W.E. Splittstoesser, 1983. Drip irrigation and tomato yield under tropical conditions. HortScience, 18(4): 460-461.
Maas, E.V., and G.J. Hoffman, 1977. Crop salt tolerance current assessment. J.Irrig. Drain. 103: 115-134.
Mazaheri Tehrani, M., S.A. Mortazavi, H.R. Ziaolhagh and A. Ghandi, 2007. Production and Processing of Tomatoes. Volume 1, Marz Danesh Publications, first edition, 240 pages.
Mohagheghzadeh, H. and E.A. Karami, 2018. Application of drip-tape irrigation in tomato production: Analysis of optimal water-use. Iranian Agricultural Extension and Education J., 13(2): 71-89.
Molden, D.J., R. Sakthivadivel, C.J. Perry, and C. de Fraiture, 1998. Indicators for comparing performance of irrigated agricultural systems. Research Report No. 20, Colombo, Sri Lanka: International Wate Management Institute.
Najafi Alamdarloo, H., A.H. Chizari and R. Mahmoud Gardi, 2008. Investigating the relative advantage of regional exports and tomato planting in Fars province. The First National Congress of Tomato Production and Processing Technology, Mashhad.
Nazari, B., 2018. Comprehensive study and analysis of productivity gap and preparation of a guide to improve agricultural water productivity with the approach of empowering farmers and sustainability in aquifers (Case study: Qazvin plain). Final Research Report, National Center for Strategic Studies in Agriculture and Water. Chamber of Commerce. 310 p.
Neerai, J., H.S. Chauhan, P.K. Singh and K.N. Shukla, 2000. Response of tomato under drip irrigation and plastic mulching. 6th International Micro-Irrigation Congress. Cape Town, South Africa, 22-27 October.
Pourmohamad, Y., M. Mousavi Baygi, A. Alizadeh, A.N. Ziaei, M. Bannayan Aval, 2017. Estimating major crop water productivity at Neyshabour basin and optimize crop area. J. Water and Soil, 31(1): 112-126.
Saei, M., 2011. Economic comparison of furrow and micro irrigation methods on tomato production under plastic coverage in Jiroft region. Iranian Water Researches J., 8(5): 70-89.
Sarmad, Z., A. Bazargan, and E. Hejazi, 2001. Research Methods in Behavioral Sciences. Agah Publishing, Tehran, 405 pp.
SCS, 1972. U.S. Soil Conservation Service, National Engineering Handbook, Hydrology Section 4.
Shahrokhnia, M.A. and H. Rahimi, 2017. Economic analysis of deficit irrigation for transplanted tomato cultivars. Iranian Water Researches J., 30(4): 483-495.
Shahrokhnia, M.A., A. Zare and A. Estakhr, 2010. Determining the amount of water consumption, irrigation efficiency and water use efficiency in farms in four cities of Fars province. Proceedings of the Second National Conference on Comprehensive Water Resources Management. University of Kerman, 7-2 Bahman, Kerman, Iran.
Shahrokhnia, M.A., M. Shahamirian, A. Olyan Ghiasi, 2016. Influence of irrigation water on quality and quantity of tomato yield under seedling cultivation. Iranian J. Irrigation and Drainage, 2(10): 177-186.
Shrivastava, P.K., M.M. Parikh, N.G Sawani, and S. Raman, 1994. Effect of drip irrigation and mulching on tomato yield. Agric. Water Manage., 25(2): 179-184.
Singh, S.D., and P. Singh, 1978. Value of drip irrigation compared with conventional irrigation for vegetable production in a hot arid climate, Agron. J., 70(6): 945-947.
Soltani, Gh., S.M.R. Akbari and H. Mohammadi, 2010. Agricultural water productivity in drought-prone areas: A case study of Marvdasht-Karbal. National Conference on Water Crisis Management, Islamic Azad University, March 2010, Marvdasht Branch.
Zamani, A., S. Mortazavi, H. Balali, 2014. Economical water productivity of agricultural products in bahar plain, Hamadan. J. Water Research in Agriculture, 28(1): 51-62.
Zhou, Q., Y. Zhang, and F. Wub, 2021. Evaluation of the most proper management scale on water use efficiency and water productivity: A case study of the Heihe River Basin, China. Agric. Water Manag., 246,