نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

2 استاد گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

3 استادیار گروه احیاء مناطق خشک و کوهستانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

چکیده

این پژوهش با هدف برآورد هزینه پروژه های آبیاری قطره ای در مراحل اولیه طراحی با استفاده از تکنیک برنامه ریزی ژنتیک، با استفاده از داده‌های 100 پروژه آبیاری قطره ای انجام شد. ا مهمترین ویژگی ها که بیشترین تاثیر را در هزینه ها داشتند با استفاده از نرم‌افزار Eureqa و بهره گیری از برنامه ریزی ژنتیک انتخاب شدند. در مرحله آخر مدل های مختلفی در هر بخش برای برآورد هزینه ارائه شده و بر اساس آماره های دقت و پیچیدگی، بهترین مدل در هر بخش معرفی شدند. نتایج آنالیز همبستگی بین متغیرهای مستقل با متغیر وابسته (هزینه هر بخش) نشان داد که در بخش TCP متغیرPP (توان پمپ مورد نیاز)، در بخش TCF متغیر L16mm (طول کل لترال)، در بخش TCI متغیر SR (فاصله ردیف گیاهان) و در بخش TCT متغیر HP (ارتفاع پمپاژ) به ترتیب با ضریب همبستگی (R) برابر با 0/77، 0/64، 0/36 و 0/43 بیشترین مقدار را بین بقیه متغیرها داشته و همگی در سطح اطمینان یک درصد معنی‌دار شدند. همچنین نتایج مدل‌سازی هزینه سامانه آبیاری قطره ای نشان داد که در بخش TCP مدلی با معیار ارزیابی R برابر 0/45، MAE (میانگین قدر مطلق خطا) برابر با 27236333 ریال و پیچیدگی 22 بهترین مدل بوده و این معیارهای ارزیابی برای بهترین مدل در بخش TCF برابر 0/85، 21198257 ریال و 13، در بخش TCI برابر0/77، 45483996 ریال و 11، و در بخش TCT این معیارها به ترتیب 0/74، 77220845 ریال و 15 به دست آمد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Early Stage Cost Modeling of Drip Irrigation Systems

نویسندگان [English]

  • Masoud Pourgholam-Amiji 1
  • AbdolMajid Liaghat 2
  • Khaled Ahmadaali 3

1 Ph.D. Candidate, Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.

2 Professor, Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran

3 Assistant Professor, Department of Arid and Mountainous Regions Reclamation, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

چکیده [English]

Introduction
Allocation of budget to pressurized irrigation projects is supported by the government to manage, saving water resources and increase agricultural production and is considered as the ideal project of the country. Cost-effectiveness and awareness of the cost of an irrigation system is important and necessary for the government. Therefore, estimating the initial and final cost of the project, especially irrigation systems, is one of the project management tools that allow project managers to make more accurate decisions at different stages. Finding a model to identify the important factors affecting the final cost of an irrigation system, as well as formulating it for use throughout the country and regions with different characteristics, is what the present study seeks.

Methodology
The aim of this study was to estimate the cost of drip irrigation projects in the early stages of design using genetic programming technique, using data from 100 drip irrigation projects, in four sections including; cost of pumping station and central control system (TCP), cost of on-farm equipment (TCF), cost of installation and performing on-farm and pumping station (TCI) and total cost (TCT). First, a database containing 39 important and influential variables on the cost of the mentioned sections was prepared and the prices of the projects were updated for the base year of 2019. In the next step, the most important features that had the highest impact on the costs were selected using Eureqa Formulize software and using genetic programming. In the last stage, different models were presented in each section to estimate the cost and the best model in each section was introduced based on the statistics of accuracy and complexity.

Results and Discussion
The results of correlation analysis between independent variables and dependent variable (cost of each section) show that in TCP section PP variable (pump power required), in TCF section L16mm variable (total lateral length), in TCI section SR variable (plant row spacing) and in the TCT section, the HP variable (pumping height) with the correlation coefficient (R) equal to 0.766, 0.638, 0.355 and 0.429, respectively, had the highest value among the other variables and all were significant at the level of one percent confidence. Also, the results of cost modeling for drip irrigation system showed that in the TCP section, a model with an evaluation criterion of R equal to 0.449, MAE (average absolute error value) equal to 27236333 Rials and complexity of 22 was the best model. These evaluation criteria for the best model in the TCF section were equal to 0.848, 21198257 Rials and 13, in the TCI section equal to 0.770, 45483996 Rials and 11, and in the TCT section these criteria were 0.743, 77220845 Rials and 15, respectively.

Conclusions
In this study, the cost estimation of different parts of the drip irrigation system was modeled using genetic programming algorithm, and the obtained results showed that the presented models had excellent accuracies in each part. The results of this study can be a very useful tool for researchers, managers, students, consultants, contractors and those who are concerned in the water industry. By conducting similar research, it is possible to make an economic estimate with a high accuracy before the implementation stage.

Acknowledgement
This article is extracted from the Ph.D. dissertation, the first author of the article. For this purpose, the authors of the article would like to thank the Department of Irrigation and Reclamation Engineering, Faculty of Agriculture Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran for their excellent cooperation, providing the necessary facilities for this research and the preparation of relevant articles.
Keywords: Pressurized Irrigation, Cost Estimation, Genetic Algorithm, Feature Selection, Eureqa Formulize.

کلیدواژه‌ها [English]

  • Pressurized Irrigation
  • Cost Estimation
  • Genetic Algorithm
  • Feature Selection
  • Eureqa Formulize
Afshar, N. R., & Fahmi, H. (2019). Impact of climate change on water resources in Iran. International Journal of Energy and Water Resources, 3(1), 55-60.
Ahmadaali, K., Ramezani Etedali, H., & Hosseini Pazhouh, N. (2017). Assessment of modern irrigation systems in Qom province. Iranian Journal of Irrigation & Drainage, 11(5), 736-749. (In Persian)
Alshahethi, A. A. A., & Radhika, K. L. (2018). Estimating the Final Cost of Construction Project Using Neural Networks: A Case of Yemen Construction Projects. International Journal for Research in Applied Science & Engineering Technology, 6(11), 2141-2151.
Amen, R., Hameed, J., Albashar, G., Kamran, H. W., Shah, M. U. H., Zaman, K. U., ... & Ullah, S. (2020). Modeling the Higher Heating Value of Municipal Solid Waste for Assessment of Waste-To-Energy Potential: A Sustainable Case Study. Journal of Cleaner Production, 125575.
Arafa, M., & Alqedra, M. (2011). Early stage cost estimation of buildings construction projects using artificial neural networks. Early stage cost estimation of buildings construction projects using artificial neural networks, 4(1).
Arage, S. S., & Dharwadkar, N. V. (2017). Cost estimation of civil construction projects using machine learning paradigm. In 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC) (pp. 594-599). IEEE.
Bakas, T., Papadimitriou, Ι., & Argyri, P. (2020). Water crisis-beyond the destruction. Open Schools Journal for Open Science, 2.
Chandanshive, V., & Kambekar, A. R. (2019). Estimation of building construction cost using artificial neural networks. Journal of Soft Computing in Civil Engineering, 3(1), 91-107.
Closas, P., Bugallo, M. F., Coma, E., & Méndez, L. (2013, May). Prediction of influenza rates by particle filtering. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 1046-1050). IEEE.
Cosgrove, W. J., & Rijsberman, F. R. (2014). World water vision: making water everybody's business. Routledge.
Demirhan, H., & Atilgan, Y. K. (2015). New horizontal global solar radiation estimation models for Turkey based on robust coplot supported genetic programming technique. Energy Conversion and Management, 106, 1013-1023.
Douglas-Smith, D., Iwanaga, T., Croke, B. F., & Jakeman, A. J. (2020). Certain trends in uncertainty and sensitivity analysis: An overview of software tools and techniques. Environmental Modelling & Software, 124, 104588.
Ekung, S., Lashinde, A., & Adu, E. (2021). Critical Risks to Construction Cost Estimation. Journal of Engineering, Project, and Production Management, 11(1), 19-29.
El-Shater, T., Yigezu, Y. A., Shideed, K., & Aw-Hassan, A. (2017). Impacts of Improved Supplemental Irrigation on Farm Income, Productive Efficiency and Risk Management in Dry Areas. Journal of Water Resource and Protection, 9(13), 1709.
FAOSTAT. (2018). World food and agriculture. Statistical Pocketbook, FAO: Rome, Italy.
Flores, J. H. N., Faria, L. C., Rettore Neto, O., Diotto, A. V., & Colombo, A. (2021). Methodology for Determining the Emitter Local Head Loss in Drip Irrigation Systems. Journal of Irrigation and Drainage Engineering, 147(1), 06020014.
Gany, A. H. A., Sharma, P., & Singh, S. (2019). Global Review of Institutional Reforms in the Irrigation Sector for Sustainable Agricultural Water Management, Including Water Users’ Associations. Irrigation and drainage, 68(1), 84-97.
Gholizadeh-Sarabi, S., Davary, K., Ghahraman, B., & Shafiei, M. (2019). Historical study of coupled human-water system from socio-hydrological perspective, Case study: Mashhad basin. Iran-Water Resources Research, 15(4), 148-170. (In Persian)
Gomes, F. M., Pereira, F. M., Silva, A. F., & Silva, M. B. (2019). Multiple response optimization: Analysis of genetic programming for symbolic regression and assessment of desirability functions. Knowledge-Based Systems, 179, 21-33.
Gransberg, D. D., & Rueda, J. A. (2020). Construction equipment management for engineers, estimators, and owners. CRC Press.
Günaydın, H. M., & Doğan, S. Z. (2004). A neural network approach for early cost estimation of structural systems of buildings. International journal of project management, 22(7), 595-602.
Hamdi Ahmadabad, Y., Liaghat, A., Rasoulzadeh, A., & Ghaderpour, R. (2019). Investigation of in the Capita Water Consumption Variation in Iran Based on the Past Two-Deca Diet. Iranian Journal of Soil and Water Research, 50(1), 77-87. (In Persian)
Hassani, Y., Hashemy Shahdany, S. M., & Zahraei, B. (2020) Developing A New Operation-Economic Framework for Irrigation Networks without Water Market. Journal of Water and Soil Science, 24(1), 27-43. (In Persian)
Kadkhodaie, F., Asghari Moghaddam, A., Barzegar, R., & Gharekhani, M. (2020). Comparison of Neural Network and Neuro-Fuzzy Techniques to Improve the DRASTIC Frame Work (Case Study: Shabestar plain Aquifer). Water and Soil Science, 30(1), 1-14. (In Persian)
Karbachevsky, A., Baskin, C., Zheltonozhskii, E., Yermolin, Y., Gabbay, F., Bronstein, A. M., & Mendelson, A. (2021). Early-Stage Neural Network Hardware Performance Analysis. Sustainability, 13(2), 717.
Komkov, V., Choi, K. K., & Haug, E. J. (1986). Design sensitivity analysis of structural systems (Vol. 177). Academic press.
Larsen, P. E., Cseke, L. J., Miller, R. M., & Collart, F. R. (2014). Modeling forest ecosystem responses to elevated carbon dioxide and ozone using artificial neural networks. Journal of Theoretical Biology, 359, 61-71.
Lester, E. I. A. (2017). Estimating. In: Project management, planning and control. The Netherlands: Elsevier, 61–65.
Matel, E., Vahdatikhaki, F., Hosseinyalamdary, S., Evers, T., & Voordijk, H. (2019). An artificial neural network approach for cost estimation of engineering services. International journal of construction management, 1-14.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900.
Najarchi, M., shekari, H., jafarinia, R., Mokhtari, S., & Alizadeh, H. (2019). Optimization of Cropping Pattern and Water Resources at Different Levels of Irrigation for Hot and Dry Areas (Case study: Dehloran Plains, Ilam Province). Iranian Journal of Soil and Water Research, 50(6), 1351-1361. (In Persian)
NASA Executive Cost Analysis Steering Group. (2015). NASA cost estimating handbook. NASA, 63(4).
Nguy-Robertson, A., Gitelson, A., Peng, Y., Viña, A., Arkebauer, T., & Rundquist, D. (2012). Green leaf area index estimation in maize and soybean: Combining vegetation indices to achieve maximal sensitivity. Agronomy Journal, 104(5), 1336-1347.
Nonis, F., Barbiero, P., Cirrincione, G., Olivetti, E. C., Marcolin, F., & Vezzetti, E. (2020). Understanding Abstraction in Deep CNN: An Application on Facial Emotion Recognition. In Progresses in Artificial Intelligence and Neural Systems (pp. 281-290). Springer, Singapore.
Oki, T. (2020). World Water Resources at Stake. In Human Geoscience (pp. 89-95). Springer, Singapore.
Park, C. S. (2012). Fundamentals of Engineering Economics. Chan S. Park. Pearson Education.
Perry, C., Steduto, P., & Karajeh, F. (2017). Does improved irrigation technology save water? A review of the evidence. Food and Agriculture Organization of the United Nations, Cairo, 42.
Pettang, C., Mbumbia, L., & Foudjet, A. (1997). Estimating building materials cost in urban housing construction projects, based on matrix calculation: the case of Cameroon. Construction and building materials, 11(1), 47-55.
Pourgholam-Amiji, M., Liaghat, A., Ghameshloua, A., Khoshravesh, M., Waqas, M.M. (2020). Investigation of the yield and yield components of rice in areas with shallow water table and saline. Big Data in Agriculture (BDA), 2(1), 36-40.
Pourgholam-Amiji, M., Liaghat, A., Vali, M. H., & Parsamehr, H. R. (2020). Construction of A Moisture Sensor for Smart Irrigation and Determine the Proper Location for Installation to Stop Irrigation to Prevent Water Loss. Water Management in Agriculture, 6(2), 21-36. (In Persian)
Qian, G., & Mahdi, A. (2020). Sensitivity analysis methods in the biomedical sciences. Mathematical Biosciences, 323, 108306.
Rampone, S., & Valente, A. (2017). Prediction of seasonal temperature using soft computing techniques: application in Benevento (Southern Italy) area. Journal of Ambient Intelligence and Humanized Computing, 8(1), 147-154.
Saltelli, A., Aleksankina, K., Becker, W., Fennell, P., Ferretti, F., Holst, N. ... & Wu, Q. (2019). Why so many published sensitivity analyses are false: A systematic review of sensitivity analysis practices. Environmental modelling & software, 114, 29-39.
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D. ... & Tarantola, S. (2008). Global sensitivity analysis: the primer. John Wiley & Sons.
Schmidt, M., & Lipson, H. (2009). Distilling free-form natural laws from experimental data. Science, 324(5923), 81-85.
Schmidt, M., Carter, J., Stone, G., & O’Reagain, P. (2016). Integration of optical and X-band radar data for pasture biomass estimation in an open savannah woodland. Remote Sensing, 8(12), 989.
Vaghefi, S. A., Keykhai, M., Jahanbakhshi, F., Sheikholeslami, J., Ahmadi, A., Yang, H., & Abbaspour, K. C. (2019). The future of extreme climate in Iran. Scientific reports, 9(1), 1-11.
Valentín, F., Nortes, P. A., Domínguez, A., Sánchez, J. M., Intrigliolo, D. S., Alarcón, J. J., & López-Urrea, R. (2020). Comparing evapotranspiration and yield performance of maize under sprinkler, superficial and subsurface drip irrigation in a semi-arid environment. Irrigation Science, 38(1), 105-115.
Weber, F., Theers, S., Surmann, D., Ligges, U., & Weihs, C. (2018). Sensitivity analysis of ordinary differential equation models.
Wen, L., Li, Q., Li, Y., & Ma, Z. (2018). Carbon Emission and Economic Growth Model of Beijing Based on Symbolic Regression. Polish Journal of Environmental Studies, 27(1).
Wu, N., & Shih, S. G. (2020). Cost estimation through Monte Carlo simulation in architectural early design stage. The International Journal of Electrical Engineering & Education, 0020720920923308.
Yin, Z., Luo, Q., Wu, J., Xu, S., & Wu, J. (2021). Identification of the long-term variations of groundwater and their governing factors based on hydrochemical and isotopic data in a river basin. Journal of Hydrology, 592, 125604.
Zhang, Y. F., & Fuh, J. Y. H. (1998). A neural network approach for early cost estimation of packaging products. Computers & Industrial Engineering, 34(2), 433-450.
Zwaving, J. O. (2014). Probablistic estimating of engineering costs.