نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری تخصصی مهندسی آب-آبیاری و زهکشی، گروه مهندسی و مدیریت آب دانشکده کشاورزی دانشگاه تربیت مدرس

2 عضو هیئت علمی دانشگاه تربیت مدرس

3 عضو هیئت علمی موسسه تحقیقات فنی مهندسی کشاورزی کرج

4 محقق، وزارت هواشناسی استرالیا

چکیده

اثر استفاده از داده‌گواری بر افزایش دقت تخمین تبخیر-تعرق (ET) با استفاده از دو روش فیلتر کالمن جمعیتی(EnKF) و فیلتر ذره(PF) بررسی شد. مشاهدات و مدل مورد استفاده به ترتیب عبارت بودند از تبخیر-تعرق محاسبه شده با استفاده از روش سبال (روش مبتنی بر سنجش از دور) و مقادیر ET که به روش پیشنهادی نشریه فائو 56 برای شرایط غیر استاندارد محاسبه شدند. به منظور ارزیابی کارایی روش‌های مذکور، نتایج بدست آمده از سه رویکرد شامل الف) داده‌گواری به کمک PF، ب) داده‌گواری به کمک EnKF و ج) شبیه‌سازی بدون استفاده از داده‌گواری (OL)، با نتایج یک سامانه‌داده‌گواری دیگر که در آن رطوبت خاک با استفاده از مقادیر اندازه‌گیری شده رطوبت خاک به وسیله دستگاه TDR و حل عددی معادله ریچاردز محاسبه شده بود (BL)، مقایسه گردید. نتایج بدست آمده دلالت بر آن دارد که داده‌گواری با استفاده از روش‌های PF و EnKF توانستند متوسط خطای سوگیری در برآورد رطوبت خاک در لایه توسعه ریشه را به ترتیب 7 و 9 درصد حجمی نسبت به OL کاهش دهند. همچنین داده‌گواری با PF و EnKF توانست nRMSE رطوبت خاک را نسبت به OL، 8 درصد کاهش دهد. بنابراین به کمک داده‌گواری می‌توان به بهبود تخمین آب مصرفی و ارتقای مدیریت آبیاری دست یافت.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Assessment of improving the accuracy of actual evapotranspiration estimation in agricultural lands using data assimilation with remote sensing observations and the FAO-56 model

نویسندگان [English]

  • Seyed Hasan Tabatabaii 1
  • Seyed Majid Mirlatifi 2
  • Hosein Dehghanisanij 3
  • Ashkan Shokri 4

1 PhD Candidate in Water Engineering-Irrigation and Drainage , Department of Water Engineering and Management, Faculty of Agriculture, Tarbiat Modares University

2 Faculty member

3 Faculty member of Karaj Agricultural Engineering Technical Research Institute

4 Scientific Researcher, Bureau of Meteorology

چکیده [English]

Introduction:

Data assimilation is a scientific method which integrates information from the actual measurements and the model predictions within a defined framework to enhance the accuracy of the estimations of variables or parameters under investigation. This process comprises of two phases called prediction and update. In the prediction phase, the model estimations are computed using the Monte Carlo simulation method. This process continues until observation data (measurements) becomes available. In the update phase, model estimations and observations are combined, taking into account the confidence level associated with each one of the data sources (observations, and model estimations), resulting in posteriori estimates (updated outcomes). This study focuses on improving the accuracy of the estimates of the soil moisture contents at root zone depth using the ET estimation model suggested for non-standard conditions by FAO 56 (Allen et al., 1998) through the utilization of two data assimilation methods namely the Ensemble Kalman Filter (EnKF) and the Particle Filter (PF). ET was calculated according to the Surface Energy Balance (SEBAL) algorithm using Landsat 8 satellite imagery as observation data for the data assimilation system.

Materials and Methods:

In order to ascertain the effectiveness of the data assimilation methods applied, results obtained from a data assimilation system (referred to as BL) which was implemented in two sugar beet fields and two corn fields in the Jovein region were utilized. In the BL system, simulated soil moisture contents of the root zone layer obtained by numerically solving the Richards equation were combined with the soil moisture measurements taken at specific points in the fields using soil moisture sensors (TDR). 51 TDR access tubes were installed in the fields to measure soil moisture contents at various depths using Time Domain Reflectometry (TDR) sensors. Soil moisture measurements were recorded from Khordad to Aban 1399 (write in English calendar).

The essence of data assimilation methods lies in the amalgamation of homogeneous information about the studied phenomenon obtained through different mechanisms. In this study, the observations utilized included ET calculated based on the SEBAL algorithm. In the FAO-56 model, evapotranspiration and soil moisture content of the surface and root zone layers were computed. Since soil moisture contents of the surface and the root zone layers serve as the initial conditions for subsequent simulation steps, data assimilation was applied to the soil moisture content instead of the ET. To achieve this, ET obtained from the SEBAL algorithm was converted into soil moisture content and subsequently used in the data assimilation process.

Conclusion:

The average standard deviation of the simulated soil moisture contents (σ) in the PF and EnKF approaches was 36% and 32% lower, respectively, compared to the open-loop (OL) approach. Throughout the growth period, PF and EnKF consistently resulted in lower σ compared to OL in the three fields which were irrigated by center-pivot irrigation systems. However, following each irrigation event in the field M, which was irrigated by a drip irrigation system, σ suddenly increased and became nearly equivalent to OL. This was attributed to the greater depth of irrigation water in this field as compared with the other three fields. On the average, the magnitude of σ change (σΔ), representing the reduction in σ before and after the update, was 0.032 and 0.037 for PF and EnKF, respectively. Consequently, the results suggested that data assimilation reduces the uncertainty of simulation results.

The research findings indicate that data assimilation significantly reduced the BIAS and nRMSE indices compared with the OL approach. The average BIAS for EnKF, PF, and OL was 0.018, 0.020, and 0.028, respectively, while the average nRMSE for the three methods was 17.3%, 17.5%, and 18.9%, respectively. In other words, the use of ET observations obtained from Landsat 8 satellite imagery and the SEBAL algorithm significantly improved the accuracy of the estimation of ET with the FAO-56 model. Therefore, the obtained results suggest that data assimilation can be employed to enhance the accuracy water consumption estimates and to improve irrigation management.

کلیدواژه‌ها [English]

  • : Ensemble Kalman Filter
  • Particle Filter
  • SEBAL
  • Soil-Water-Plant Modeling
Alavi, N. (2008). Data Assimilation techniques to improve evapotranspiration estimates. unversity of guelph faculty. Canada
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, Italy, 301 pp.
Allen, R., Waters, R., Tasumi, M., Trezza, R., Bastiaanssen, W. (2002). SEBAL, Surface energy balance algorithms for land, Idaho Implementation. Advanced Training and User’s Manual, version 1.0.
Allen, R. G., Pereira, L. S., Smith, M., Raes, D., & Wright, J. L. (2005). FAO-56 Dual Crop Coefficient Method for Estimating Evaporation from Soil and Application Extension Journal of Irrigation and Drainage Engineering, 131(1), 2–13.
Bastiaanssen, W. G., Menenti, M., Feddes, R. A., & Holtslag, A. A. M. (1998). A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of hydrology, 212, 198-212.‏
Brisson, N., Mary, B., Ripoche, D., Jeuffroy, M. H., Ruget, F., Nicoullaud, B., ... & Delécolle, R. (1998). STICS: a generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn. Agronomie, 18(5-6), 311-346.‏
Boegh, E., Soegaard, H., Broge, N., Hasager, C. B., Jensen, N. O., Schelde, K., & Thomsen, A. (2002). Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote sensing of Environment, 81(2-3), 179-193.‏ ‏
Burt, C. M., Mutziger, A. J., Allen, R. G., & Howell, T. A. (2005). Evaporation research: Review and interpretation. Journal of irrigation and drainage engineering, 131(1), 37-58.‏
Deb, P., Abbaszadeh, P., & Moradkhani, H. (2022). An ensemble data assimilation approach to improve farm-scale actual evapotranspiration estimation. Agricultural and Forest Meteorology, 321, 108982.‏
Doherty, C. T., Johnson, L. F., Volk, J., Mauter, M. S., Bambach, N., McElrone, A. J., ... & Melton, F. S. (2022). Effects of meteorological and land surface modeling uncertainty on errors in winegrape ET calculated with SIMS. Irrigation Science, 40(4-5), 515-530.‏
Dong, Q., Zhan, C., Wang, H., Wang, F., & Zhu, M. (2016). A review on evapotranspiration data assimilation based on hydrological models. Journal of Geographical Sciences, 26, 230-242.‏
Gebler, S., Franssen, H.H., Pütz, T., Post, H., Schmidt, M. and Vereecken, H., 2015. Actual evapotranspiration and precipitation measured by lysimeters: a comparison with eddy covariance and tipping bucket. Hydrology and Earth System Sciences, 19(5), p.2145.
He, X., Liu, S., Xu, T., Yu, K., Gentine, P., Zhang, Z., ... & Wu, D. (2022). Improving predictions of evapotranspiration by integrating multi-source observations and land surface model. Agricultural Water Management, 272, 107827.‏
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., ... & Thépaut, J. N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999-2049.‏
Holton, J.R., Hakim, G.J., (2013). An Introduction to Dynamic Meteorlogy – 5th ed. Academic Press
Hirschi, M., Michel, D., Lehner, I., & Seneviratne, S.I, (2017). A site-level comparison of lysimeter and eddy covariance flux measurements of evapotranspiration. Hydrol. Earth Syst. Sci. 21, 1809-1825.
Jensen, M.E., & Allen, R.G. (2016). Evaporation, Evapotranspiration, and Irrigation Water Requirements: Task Committee on Revision of Manual 70 (No. Ed. 2). American Society of Civil Engineers (ASCE).
Li, D., Franssen, H.J.H., Han, X., Jiménez-Bello, M.A., Alzamora, F.M. & Vereecken, H., (2018). Evaluation of an operational real-time irrigation scheduling scheme for drip irrigated citrus fields in Picassent, Spain. Agricultural water management, 208, pp.465-477.
Kozak, J. A., Ahuja, L. R., Green, T. R., & Ma, L. (2007). Modelling crop canopy and residue rainfall interception effects on soil hydrological components for semi‐arid agriculture. Hydrological Processes: An International Journal, 21(2), 229-241.‏
Kutz, J. N., & Kutz, J. N. (2013). Data-driven modeling & scientific computation: methods for complex systems & big data. OUP Oxford.‏
Netzer, Y., Yao, C., Shenker, M., Bravdo, B.-A., & Schwartz, A. (2008). Water use and the development of seasonal crop coefficients for Superior Seedless grapevines trained to an open-gable trellis system. Irrigation Science, 27(2), 109–120.
Ristic, B., Arulampalam, S., & Gordon, N. (2003). Beyond the Kalman filter: Particle filters for tracking applications. Artech house.‏
Tabatabaii, S.H., Mirlatifi, S.M., Dehghanisanij, H., Shokri, A. (2021). Comparison of computed sugar beet evapotranspiration by the Penman-Monteith equation using measured climatological parameters and predicted products of GFS, ECMWF and MeteoBlue meteorological forecasting models in the Jovein region. Irrigation and Drainage Structures Engineering, 83(22), 1-20. (In persian)
Tabatabaii, S.H., Mirlatifi, S.M., Dehghanisanij, H., Naghedifar, S.M.R., Shokri, A. (2024). Sensitivity Assessment of Soil Moisture Data Assimilation to the Number of the Sampling Depths and the Time Intervals Between Measurements Using Numerical Solution of the Richards Equation. Irrigation and Drainage Structures Engineering, 91(24), 87-108. (In persian)
Van Genuchten, M. V., Leij, F. J., & Yates, S. R. (1991). The RETC code for quantifying the hydraulic functions of unsaturated soils. Rep. EPA-600/2-91/065. 92 pp., U.S. Environ, Prot. Agency, Ada, Okla.
Von Hoyningen-Huene J. 1981. The interception of precipitation in agricultural crops. Work report from the German Association for Water Management and Cultural Building, DVWK, Braunschwig, Germany (In Germany)
Zhang, Z., Tian, F., Hu, H., & Yang, P. (2014). A comparison of methods for determining field evapotranspiration: Photosynthesis system, sap flow, and eddy covariance. Hydrology and Earth System Sciences, 18(3), 1053–1072.