نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد دانشکده مهندسی عمران دانشگاه صنعتی جندی شاپور دزفول

2 استادیار دانشکده مهندسی عمران، دانشگاه صنعتی جندی شاپور دزفول

چکیده

تخمین مقاومت هیدرویکی جریان در کانال­های روباز به­واسطۀ وجود جریان‌های ثانویه و لزجت گردابی همواره با چالش جدی مواجه بوده است. به­واسطۀ وجود اثر جداره‌ها بر موقعیت سرعت حداکثر، تعیین سهم لوله‌های جریان در بستر و جداره با خطا مواجه است. برای این منظور در این تحقیق ابتدا با استفاده از روش ترسیم تطابقی و رسم خطوط‌   هارمونیک جریان و پتانسیل، سهم لوله‌های جریان در بستر و جداره تخمین زده شده؛ پس از آن، با حذف اثر عوامل ایجادکنندۀ گرادیان سرعت در نتایج ساده شدۀ حل توام معادلات پیوستگی و ممنتم، مقادیر تنش برشی حاصل از وزن لوله‌های جریان در بستر و جداره‌ها محاسبه گردید. از مقایسۀ نتایج حاصل از روش ترسیم تطابقی با نتایج آزمایشگاهی اندازه‌گیری مستقیم تنش برشی، میزان اندرکنش گردایان سرعت بر نتایج تنش برشی به روش ترسیم تطابقی تعیین گردید. بررسی­ها نشان می­دهد که با افزایش نسبت ظاهری، اثر گرادیان سرعت کاهش می‌یابد، به­­گونه­ای که با افزایش نسبت ظاهری از 1 به 20­، میزان اثر گرادیان سرعت بر تخمین تنش برشی بستر به­ترتیب از 7 به 1 درصد  و در جداره از 15 به 3 درصد کاهش می‌یابد. سرانجام با ارائۀ روابطی مقادیر تدقیق شدۀ تنش برشی در بستر و جداره معرفی شده­ اند.

کلیدواژه‌ها

عنوان مقاله [English]

Estimation of Boundary Shear Stress in Smooth Rectangular Open Channel by Considering the Effect of Velocity Gradient

نویسندگان [English]

  • pouri beygi 1
  • Babak Lashkara-Ara 2

1 MSc Student in Civil Engineering Department Jundi-Shapur University of Technology

2 Assistant Professor Civil Engineering Department Jundi-Shapur University of Technology Dezful, Iran

چکیده [English]

The estimation of hydraulic resistance of the flow in open channels has always faced a serious challenge because of presence of secondary currents and vortex viscosity. Determination of contribution of flow pipes in the bed and the wall is faced with error, due to effects of the walls on the maximum velocity position. In this study, the contribution of the flow pipes in the bed and the wall was approximated by using conformal mapping method and by plotting harmonic lines of current and potentials. Then, the shear stresses obtained from the weight of tube pipes in the bed and the walls were calculated by eliminating the effect of the velocity gradient factors in the simplified results of solving the conjugation and momentum equations. The rate of interaction of velocity gradient on shear stress results of the conformal mapping was determined by comparing the results of conformal mapping method with that of experimental results of direct shear stress measurement. Investigations have shown that the effect of the velocity gradient decreases with increasing aspect ratio, so that with increasing aspect ratio from 1 to 20, the effect of the velocity gradient on the shear stress of the bed has been reduced from 7 to 1 percent, and in the wall from 15 to 3 percent. Finally, measured values of shear stress in the bed and the wall were introduced by presenting some equations.

کلیدواژه‌ها [English]

  • Open channel flow
  • Secondary flow
  • Dip Phenomena
Berlamont, J. E., Trouw, K. and Luyckx, G. 2003. Shear stress distribution in partially filled pipes. J. Hydraul. Eng. 129(9): 697-705.
 
Chiu, C. L. and Tung, N. C. 2002. Maximum velocity and regularities in open-channel flow. J. Hydraul. Eng. 128(4): 390-398.
 
Cruff, R. W. 1965. Cross-channel transfer of linear momentum in smooth rectangular channels. Water-Supply Paper. No. 1592-B, U .S. Geological Survey, Center, Miss. B1-B26.
 
Einstein, H. A. 1942. Formulas for the transportation of bed-load. Trans. Am. Soc. Civ. Eng. 107,
561-597.
 
Ghosh, S.N. and Roy, N. 1970. Boundary shear distribution in open channel flow. J. Hydraul. Div. 96(4): 967-994.
 
Guo, J. and Julien, P. Y. 2002. Boundary shear stress in smooth rectangular open-channels. Adv. Hydraul. Water Eng.  I & II, 76-86.
 
Guo, J. and Julien, P. Y. 2005. Shear stress in smooth rectangular open-channel flows. J. Hydraul. Eng.  131(1): 30-37.
 
Jin, Y. C., Zarrati, A. R. and Zheng, Y. 2004. Boundary shear distribution in straight ducts and open channels. J. Hydraul. Eng. 130(9): 924-928.
 
Khodashenas, S. R., Abderrezzak, K. E. K. and Paquier, A. 2008. Boundary shear stress in open channel flow: A comparison among six methods. J. Hydraul. Res. 46(5): 598-609.
 
Knight, D. W. and Patel, H. S. 1985. Boundary shear in smooth rectangular ducts. J. Hydraul. Eng. 111(1): 29-47.
 
Knight, D. W. and Sterling, M. 2000. Boundary shear in circular pipes running partially full. J. Hydraul. Eng. 126(4): 263-275.
 
Knight, D. W., Omran, M. and Tang, X. 2007. Modeling depth-averaged velocity and boundary shear in trapezoidal channels with secondary flows. J. Hydraul. Eng. 133(1): 39-47.
 
Lashkar-Ara, B., Fathi-Moghadam, M., Shafai-Bajestan, M. and Jael, A. 2010. Boundary shear stresses in smooth channels. J. Food Agric. Environ. 8, 132-136.
 
Seckin, G., Seckin, N. and Yurtal, R. 2006. Boundary shear stress analysis in smooth rectangular channels. Can. J. Civil Eng. 33(3): 336-342.
 
Spiegel, M. R. 1993. Complex Variables. McGraw-Hill, New York .
 
Yang, S. Q. and Lim, S. Y. 1998. Boundary shear stress distributions in smooth rectangular open channel flows. Proceedings of the Institution of Civil Engineers. Water, Maritime and Energy. 130(3): 163-173.
 
Yang, S. Q., Tan, S. K. and Lim, S. Y. 2004. Velocity distribution and dip-phenomenon in smooth uniform open channel flows. J. Hydraul. Eng. 130(12): 1179-1186.
 
Zarrati, A. R., Jin, Y. C. and Karimpour, S. 2008. Semianalytical model for shear stress distribution in simple and compound open channels. J. Hydraul. Eng. 134(2): 205-215.