نوع مقاله : مقاله ترویجی

نویسندگان

1 بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان قزوین، قزوین، ایران

2 بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خراسان رضوی، مشهد، ایران

چکیده

امروزه با توجه توسعه روز افزون اجرای سامانه‌های آبیاری مکانیزه در سطح کشور، در برخی موارد این نوع سامانه‌ها به دلایل فنی و اجتماعی پاسخگوی نیاز بهره‌برداران نبوده و نیاز به توسعه سامانه‌های آبیاری دارای انعطاف‌پذیری بالا و تغییر نگرش در شیوه بهره‌برداری سامانه‌های آبیاری مکانیزه بیش از پیش مشهود است. در این راستا استفاده از قابلیت‌های سامانه‌های خودکار و اعمال فرآیندهای ‌کنترلی، در کنار اجرای سامانه‌های آبیاری تحت‌فشار امری ضرور می‌نماید. از میان سیستم‌های اتوماسیون مورد استفاده در سامانه‌های آبیاری تحت فشار، سیستم‌های SCADA از آنجایی که دارای ساختار نرم‌افزاری و سخت‌افزاری متنوعی است می‌تواند بعنوان ابزار مناسبی به‌منظور افزایش انعطاف‌پذیری، پایش بهنگام عملکرد و مدیریت بهره‌ور یک سامانه‌های آبیاری مطرح گردد به نحوی که در طیف وسیعی از شرایط مختلف بهره‌برداری سامانه آبیاری کارایی داشته و منجر به ارتقاء قابلیت‌های بهره‌برداری یک سامانه‌های آبیاری شود. قابلیت و کارایی این سیستم‌ها با توسعه سامانه‌های آبیاری تجمیعی و الزامات بهره برداری مرتبط با این نوع سامانه‌ها، امروزه بیش از پیش مشهود می باشد. نوشتار ترویجی حاضر با هدف بررسی قابلیت‌ها، مزایا و محدودیت‌های سیستم تله‌متری و SCADA در سامانه‌های آبیاری تحت‌فشار انجام گرفته تا کارشناسان، بهره‌برداران، کشاورزان و مروجین به بخشی از قابلیت‌های اثر بخش این نوع سامانه‌ها آگاهی یافته و بر اساس یک شناخت جامع، تصمیم‌گیری نمایند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

An overview of the Capabilities of Telemetry and SCADA Systems in Pressurized Irrigation Systems

نویسندگان [English]

  • afshin uossef gomrokchi 1
  • Abolghasem Haghayeghi 2

1 Agricultural Engineering Research Department, Qazvin Agricultural and Natural Resources Research and Education Center, AREEO, Qazvin, Iran.

2 Member of scientefic board, Agriculture Research Center of Khorasan Razavi

چکیده [English]

One of the fastest solutions for optimal water and energy management in irrigation systems is to upgrade the existing position from the level of mechanization of the systems to its own automation. By applying process automation in irrigation systems that mainly involve installation of software and hardware equipment, instruments and software control, allowing optimal management of water and energy consumption and improve the efficiency of irrigation units is provided. With the entry of electronic science into the agricultural sector, in addition to the production of advanced equipment, there has been an increasing use of automated control systems in irrigation systems. This process is called control, automation or self-automation. According to scientific definitions, automation is the same as intelligent systems, including reducing manpower and the resulting error and precise control of the system work cycle. Severe dependence of mechanized systems on manpower to continuously monitor the performance of tools and equipment on the one hand, error due to the wrong action of the operator or delay in taking the necessary action on the other hand Taking measures will reduce productivity in mechanized irrigation systems. It is important to note that in the current approach to the development and operation of irrigation systems, especially pressurized irrigation systems, maximizing net profit over maximum crop production is preferred, so today the use of automation systems such as SCADA and telemetry Operation of irrigation systems is under increasing pressure. Supervisory control systems and data collection (SCADA) refers to large-scale control and measurement systems. SCADA is a control and monitoring system that collects information and then processes it. In other words, SCADA refers to a set of guidelines, standards and processes and is not a pre-complicated version for system control and monitoring. In fact, SCADA is a software package that sits on the executable hardware. In general, SCADA systems include the elements of instrumentation, control equipment, communication equipment, electrical equipment, software packages, central and local control room. Figure 4 shows the general structure of a SCADA system.
It is important to note that a SCADA system is subject to several major problems in addition to the many benefits it can bring to a system. The main problem is that the cost of a telemetry and telecontrol system such as SCADA is high, especially when its equipment is standardized in the system. In many cases, however, the benefits of energy savings, labor, and better utilization justify this high cost. Another limitation of this type of system is the risk of unauthorized access to the control software (whether it is human access or software changes in the control device). Other major limitations of these systems are related telecommunication protocols. These are the language communication protocols used to receive and transmit information over the network. Also, these systems, or any other type of automation system, need specialized people to operate the system, and in general, the more complex the system, the more skilled users are needed. On the other hand, due to the fact that in this system, all changes must be applied dynamically in the network platform, the relevant hardware and software must be designed with high capabilities. Numerous examples of using SCADA in various sectors of industry, water and wastewater facilities and energy management have been implemented throughout the country, and today, despite high costs and some limitations, the use of telemetry-based operation methods and SCADA in the sector Various agricultural, livestock and fisheries have also found their way and their applications in this sector have always been expanding. One of the important applications of SCADA system in the field of agriculture has been the automation of irrigation systems. The first experience of using SCADA systems in the field of agricultural water management has been in the field of irrigation canal management. Over time, the use of this type of system in other sectors of water management and irrigation has developed more and more. SCADA systems used in the field of management of irrigation systems are similar in nature to other sectors such as water and sewage facilities and water transmission lines, but according to the structure of water management in the field and how different factors affect the equipment. Hardware and telecommunication protocols are different.

کلیدواژه‌ها [English]

  • Automation
  • Instrumentation
  • Monitoring system
  • Water consumption
Andrew, P.S. (1991). Decision support systems engineering. John Wiley & Sons, Inc., New York.
Boman, B., Smith, S. & Tullos, B. (2002). Control and Automation in Citrus Micro irrigation Systems. Florida Cooperative Extension Service.
Campos, G. S., Rocha, N., Gondim, Coelho da Silva, T. & Gomes, R. (2020). An Internet of Things Framework for Smart Irrigation. Sensors. 20(1):190. https://doi.org/10.3390/s20010190.
Chee-Mun, O. (1997). Dynamic Simulation of Electric Machinery: Using MATLAB/ SIMULINK. Prentice Hall, 560 P.
Elaydi, H. (2017). An Automated Irrigation System for Greenhouses. American Journal of Electrical and Electronic Engineering, 5(2), 48-57.
Fernández García, I., Lecina, S., Ruiz-Sánchez, M.C., Vera, J., Conejero, W., Conesa, M.R., Domínguez, A., Pardo, J.J., Léllis, B.C. & Montesinos, P. (2020). Trends and Challenges in Irrigation Scheduling in the Semi-Arid Area of Spain. Water, 12, 785.
Fernández-Pacheco, D. G., Molina-Martínez, J. M., Jiménez, M. & Pagán, F. J. (2014). SCADA Platform for Regulated Deficit Irrigation Management of Almond Trees. Journal of Irrigation and Drainage Engineering,140 (5),12-32.
Ministry of Agriculture Jihad. (2017). Executive instructions for the development plan of new irrigation systems, 33 p. (In Persian)‌ ‌
Parhizgar, A., Salakhpour, M. & Moustofizadeh, N. (2007). Application ‌System ‌ Automatic control ‌ In ‌ Design of Pressured Irrigation Network. The first ‌ workshop on automation pressured irrigation ‌systems, Karaj, Iran. (In Persian)‌ ‌
Qanatian, H., Zaraei, G. & Gorji, A. (2007). Automation of pressurized irrigation systems. The first technical workshop for automation of pressurized irrigation systems. The first workshop on automation pressured irrigation systems, Karaj, Iran. (In Persian) 
Rahimi, A. & Naderi, Z. (2010). Investigation and comparison of energy consumption optimization in the control of pumping stations using automation system and classic start-up methods. Third National Conference on Irrigation and Drainage Networks Management, Ahvaz, Iran. (In Persian)
Silvister, S., Rai, R., Yadav, M., Bopshetty, S. & Sagar, P. (2017). Controlling of Drip Irrigation Methodologies. International Journal of Advanced Research in Computer Engineering & Technology, 6(1),83-89.
Solé-Torres, C., Duran-Ros, M., Arbat, G., Pujol, J., Ramírez, F., Cartagena, d. & Puig-Bargués, J. (2019). Assessment of Field Water Uniformity Distribution in a Micro irrigation System Using a SCADA System. Water, 11(7), 1-14.
Sungur, C., Çalişir, S. & Kaya, E. (2016).  Developing an Automation System for Improving the Energy Efficiency of Constant Pressure Irrigation Pumps. Journal of Irrigation and Drainage,142 (11),1-15.
Uoussef Gomrokchi, A. & Parvaresh Rizi, A. (2017). A Review of the Operation Automatic Pressurized Irrigation System. Journal of Water Management in Agriculture, 4 (1),9-20. (In Persian)
Zapata, J. C., Burgos, D. P., Arteaga, C, Canales, A.R. & Martínez, J. M. (2020). Adaptation of a Traditional Irrigation System of Micro-Plots to Smart Agri Development: A Case Study in Murcia (Spain). Agronomy,10, 1365; doi:10.3390/agronomy10091365.