نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، گروه مهندسی آب، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران.

2 دانشیار گروه مهندسی آب، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران.

3 استادیار گروه مهندسی آب، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران.

چکیده

سدهای اصلاحی گابیونی یکی از انواع سازه ها بوده که با توجه به متخلخل بودن محیطشان، می‌توانند نقش مهمی در کنترل آلودگی در رودخانه ها و آبراهه ها داشته باشند. مدل نگهداشت موقت (TSM) یکی از روشهای تحلیل جابجایی آلودگی در مجاری باز بوده که دقت آن در تخمین صحیح پارامترهای چهارگانه مدل (Dx، As، A و α) می‌باشد. در تحقیق حاضر به بررسی آزمایشگاهی تاثیر سدهای گابیونی بر جابجایی آلودگی و همچنین پارامترهای مدل نگهداشت موقت (TSM) با استفاده از مدل عددی OTIS پرداخته شد. آزمایشهای ماده ردیاب (NaCl) در یک کانال آزمایشگاهی با طول 12 متر، عرض 0/5 متر و ارتفاع دیواره 0/7 متر انجام شدند. بستر رسوبی از مصالح شنی با قطر متوسط (D50) 11/85 میلیمتر و تخلخل (n) 0/28 به طول 12 متر و ضخامت 12 سانتیمتر در کف کانال آزمایشگاهی ایجاد شد. در این مطالعه، از دو نوع سد اصلاحی گابیونی با تخلخلهای مختلف مصالح ریزدانه و 19درشت‌دانه در تعداد (N) و طولهای (a) مختلف استفاده شد. نتایج نشان داد که افزایش تعداد سدهای گابیونی (N) از یک سد به سه سد، موجب حدوداً 1/43 تا 1/71 برابر شدن مقدار ضریب پراکنش طولی (Dx) شد. از سوی دیگر، نتایج نشان داد که افزایش طول سدهای گابیونی (a) موجب افزایش حدوداً 1/43 تا 2/49 برابری مقدار ضریب (Dx) و همچنین افزایش حدوداً 1/10 تا 4/43 برابری مقدار ضریب تبادل ناحیه نگهداشت (α) خواهد شد. همچنین بررسی نتایج حاکی از افزایش ضریب (α) با استفاده از مصالح ریزدانه تر در بدنه سدهای گابیونی است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Laboratory and Numerical Investigation of the Effect of Gabion Check Dams on the Transient Storage Model (TSM) Parameters in Pollution Transport in Rivers

نویسندگان [English]

  • zahra nikbakht 1
  • Alireza Emadi 2
  • Mohammad Mirnaseri 3

1 MSc. of water engineering department, Faculty of agricultural engineering, Sari agricultural sciences and natural resources university, Sari, Iran.

2 Associate professor of water engineering department, Faculty of agricultural engineering, Sari agricultural sciences and natural resources university, Sari, Iran.

3 Assistant professor of water engineering department, Faculty of agricultural engineering, Sari agricultural sciences and natural resources university, Sari, Iran.

چکیده [English]

Introduction

In recent years, pollution of surface water resources, especially rivers, has posed an environmental challenge. Pollution from municipal or industrial wastewater and waste disposal into rivers are important problems for human societies to protect the environment. Knowing the level of river water pollution as one of the sources of human water needs is essential and therefore modeling the quality of river water is very important. Hydraulic structures in rivers are one of the ways to control pollution in open-channel flows. Check dams are one of the types of these structures that due to the porosity of their environment can play a controlling role in the transport of contamination by increasing hyporheic exchanges as well as transient storage of contamination in their porous media. Transient storage model (TSM) is one of the methods of pollution transport analysis, especially in rivers with high hyporheic exchanges. The efficiency of the (TSM) is in the correct estimation of the four parameters of the model (Dx, As, A and α). Previous studies have not investigated the effect of hyporheic exchanges due to gabion check dams on the four parameters of thel (TSM). In this study, the effect of gabion check dams on pollution transport and the four parameters of the (TSM) with OTIS numerical model were investigated.

Methodology

Experiments of tracer material (NaCl) were performed in a flume with a length of 12 m, a width of 0.5 m and a height of 0.7 m in four flow discharges (2.5, 5 and 7.5 lit/s). An ultrasonic flow meter was used to measure the flow discharge in all experiments. Materials with medium diameter (D50) of 11.85 mm and porosity (n) of 0.28 were used to create a sedimentary bed with a length of 12 m and a thickness of 12 cm at the bottom of the flume. In this study, two types of gabion check dams with medium diameter (dg) of 11 mm (fine-grained) and 19 mm (coarse-grained) were used. In each experiment (except for the control experiment), 1 to 3 check dams were used at intervals of 2.5, 5 and 7.5 meters from the beginning of the flume, respectively. In this study, check dams with lengths of 0.75 and 0.35 m, widths of 0.5 and heights of 0.4 m were used. The length of the flume was divided into four equal reaches (L1, L2, L3 and L4). Two sensors were placed to measure the electrical conductivity (EC) of water at the end of each reach to measure the amount of contamination. Micro-propeller and ultrasonic depth-gauge were used to measure the velocity (V) and depth (h) of water flow in each reach. The laboratory results in L4 reach were simulated by the OTIS-P numerical model and the four parameters of the (TSM) were estimated.

Results and Discussion

The results showed that gabion check dams increased the transient storage of solute in the porous media of such dams, thus reducing the peak contamination concentration (Cmax) in the main flow area. On the other hand, check dams in the flow path will act as a sedimentary bed-form, which increases the hyporheic exchanges between the main flow area and the porous media of such dams. Increasing hyporheic exchanges into the porous media of the dams will also reduce the (Cmax) in the main flow area. Increasing hyporheic exchanges into the porous media of the dams also reduces the contamination concentration (Cmax) in the main flow area. Reducing the (Cmax) in the main flow area will also increase the longitudinal dispersion coefficient (Dx).

Comparison between the storage zone exchange coefficients (α) estimated by the OTIS-P numerical model showed that these coefficients decreased with decreasing the length of check dams (a). Reducing the length of check dams (a) will reduce the space of the porous media in the flow path. Therefore, the solute will leave these storage zones with a shorter residence time, so the storage zone exchange coefficient (α) decreases with decreasing the length of check dams (a).

Gabion check dams made of fine-grained materials reduce the exchange discharge between the check dams and the main flow area. The use of fine-grained materials reduces the rate of contamination transfer to the downstream reaches, so the (Cmax) in the downstream reaches will decrease, so the(Dx) will increase in the fourth interval (L4).

Conclusions

- Increasing the number of gabion dams (N) from one dam to three dams caused an approximately 1.43 to 1.71 times the value the (Dx).

- Increasing the length of gabion dams (a) from 35 cm to 75 cm caused approximately 1.43 to 2.49 times the value of the(Dx).

- Increasing the length of gabion dams (a) from 35 cm to 75 cm caused an approximately 1.10 to 4.43 times the value of the (α).

- The use of fine-grained materials in gabion dams increased the (α).

کلیدواژه‌ها [English]

  • Advection-Disperion
  • longitudinal dispersion coefficient (Dx)
  • storage zone exchange coefficients (&alpha
  • )
  • Storage Zone
Aster, R.C., Borchers, B. & Thurber, C.H. (2005). Nonlinear Regression. In Parameter Estimation and Inverse Problems, Dmowska, R., , Holton, J.R., , Rossby, H.T. (eds). Elsevier Academic Press: Burlington, MA 01803, USA; 171–190.
Azhdan, Y. (2018). Experimental investigating of the advection-dispersion equations for pollutant transport in the Gravel-Bed Rivers (Ph. D. Thesis), Sari Agricultural Sciences and Natural Resources University, Sari, Iran. (In Persian)
Azhdan, Y., Emadi, A., Chabokpour, J. and Daneshfaraz. R. (2019). Estimation of Transient Storage Parameters for Simulation of Pollution Transport in the Gravel Bed Rivers. Iranain Journal of Soil and Water Research, 50 (1), 65-76. (In Persian)
Bahr, J.M. & Rubin, J. (1987). Direct  comparison  of  kinetic  and  local equilibrium  formulations  for  solute  transport  affected  by  surface  reaction. Water Resources Research, 23(3),438-452.
Bancala, K.E. & Walters, R.A. (1983). Simulation of solute transport in a mountain pool-and riffle stream: a transient storage model. Water Resources Research, 19(3), 718–724.
Camacho, L.A. & González, R.A. (2008). Calibration and predictive ability analysis of longitudinal solute transport models in mountain streams. Environmental fluid mechanics, 8(5):597–604.
Chapra, S.C. (1997). Surface water-quality modeling. New York: McGraw-Hill.
Dewaid, L., Bonniver, I., Rochez, G. & Hallet, V. (2016). Solute transport in heterogeneous karst systems: Dimensioning and estimation of the transport parameters via multi-sampling tracer-tests modelling using the OTIS (One-dimensional Transport with Inflow and Storage) program. Journal of Hydrology, 534, 567-578.
Fernald, A. G., Wigington, P. J. & Landers, D. H. (2001).  Transient storage and hyporheic  flow  along  the  willamette  river  Oregon:  Field  measurements  and  model estimates. Water Resources Research, 37(6), 1681-1694.
Jin, L., Siegel, D.I., Lautz, L.K. & Otz, M.H. (2009). Transient  storage  and downstream  solute  transport  in  nested  stream  reaches  affected  by  beaver  dams, Hydrological Processes, 23(17), 2438–2449.
Kelleher, C., Wagener, T., McGlynn, B., Ward, A.S., Gooseff, M.N. & Payn, R.A. (2013). Identifiability of transient storage model parameters along a mountain stream. Water Resources Research, 49(9): 5290–5306.
Knapp, J.L.A., & Kelleher. C. (2020). A perspective on the future of transient storage modeling: Let's stop chasing our tails. Water Resources Research, 56, e2019WR026257.
Madadi, M.R., Akbarifard, S. & Qaderi. K. (2020). Improved Moth-Swarm Algorith m to predict transient storage model parameters in natural streams. Environmental Pollution, 262(114258): 1-9.
Mirnaseri, M. (2021). Numerical and Laboratory Investigation of the Effect of Bed Form and Suspended Load on Transmission of Pollution in Rivers (Ph. D. Thesis), Sari Agricultural Sciences and Natural Resources University, Sari, Iran. (In Persian)
Mirnaseri, M., Emadi, A., Zahiri, A., & Gholami Sefidkouhi, M. A. (2021, a). Experimental and Numerical Investigation of the Effect of Sediment Bed Thickness and DUNE Bed-Form on Contamination Transmission in Rivers. Journal of Hydraulics, 16(4), 1-20.‏ (In Persian)
Mirnaseri, M., Emadi, A., Zahiri, A., & Gholami Sefidkouhi, M. A. (2021, b). Laboratory and Numerical Investigation of the Effect of Riffle-Pool Bed-Form Areas on Pollution Transmission in Gravel-Bed Rivers. Iranian Journal of Soil and Water Research, 52(4), 1025-1040.
Movahedi, N., Dehghani, A.A., Schmidt, Ch., Trauth, N. & Meftah, M. (2020). Comparison of Hyporheic Exchanges in 2D and 3D Riffle-Pool bed form structures. Amirkabir Journal of Civil Engineering. 52 (8), 1-3. (In Persian)
Pal, D. & Galelli, S. (2019). A numerical framework for the multi-objective optimal design of check dam systems in erosion-prone areas. Environmental modelling & software, 119(3), 21-31.
Phanikumar, M.S., Aslam, I., Shen, C., Long, D.T. & Voice, T.C. (2007). Separating surface storage from hyporheic retention in natural streams using wavelet decomposition of acoustic Doppler current profiles. Water resources research, 43, W05406.
Ramaswami, A., Milford, J.B. & Small, M.J. (2005). Integrated  environmental modeling: pollutant transport, fate and risk in the environmental, John Wiley & Sons, Inc.
Rana, S. M. M., Scott, D. T. & Hester, E. T. (2017). Effects of in-stream structures and channel flow rate variation on transient storage. Journal of Hydrology, 548, 157-169.
Rana, S.M.M., Boccelli, D.L., Scott, D.T., Hester, E.T. (2019). Parameter Uncertainty with Flow Variation of the One-dimensional Solute Transport Model for Small Streams using Markov chain MonteCarlo.  Journal of Hydrology, 575, 1145-1154.
Rao, L., Wang, P.F., Dai, O.S. & Wang, C. (2018). The coupling between hydrodynamic and purification efficiencies of ecological porous spur-dike in field drainage ditch. Journal of Hydrodynamics, 30(3), 373-383.
Runkel, R.L. (1998). One dimensional transport with inflow and storage (OTIS): A solute transport model for streams and rivers. U.S. Geological Survey. Water-Resources investigations. Report 98-4018. 73 p. Denver, Colorado.
Seo, I. W. & Cheong, T. S. (2001). Moment-based  calculation of  parameters  for the storage zone model for river dispersion. Journal of Hydraulic Engineering, 127(6), 453-465.
Seo, I.W. & Cheong, T.S. (2001). Moment-based calculation of parameters for the storage zone model for river dispersion. Journal of Hydraulic Engineering, 127(6), 453-465.
Sokác, M. (2017). Determination of the longitudinal dispersion coefficient  in lowland streams with occurrence of dead zones. In Environmental Engineering 10th International Conference. 27-28 April, Vilnius Gediminas Technical University Lithuania.
Valett, H.M., Morrice, J.A., Dahm, C.N. & Campana, M.E. (1996). Parent lithology, surface-groundwater exchange, and nitrate retention in headwater streams. Limnology and Oceanography, 41(2): 333–345.
Wagner, B.J. & Harvey, J.W. (1997). Experimental  design  for  estimating parameters  of  rate-limited  mass  transfer:  Analysis  of  stream  tracer  studies,  Water Resources Research, 33(7), 1731-1741.
Ward, A.S., Kelleher, C.A., Mason, S.J.K., Wagener, T., McIntyre, N., McGlynn, B., Runkel, R.L., Payn, R.A. (2017). A software tool to assess uncertainty in transient-storage model parameters using Monte Carlo simulations. Freshwater Science, 36(1):195–217.
Zaramella,  M.,  Marion,  A.,  Lewandowski,  j.  & Nutzmann  G.  (2016).  Assessment  of  transient storage  exchange  and  advection-dispersion mechanisms  from  concentration  signatures  along breakthrough  curves.  Journal  of  Hydrology, 538,794-801.