نوع مقاله : مقاله پژوهشی

نویسنده

هیئت علمی دانشگاه شهید چمران اهواز

چکیده

فلوم‌های گلو بریده که نوعی پارشال فلوم‌ بدون بخش طولی گلوگاه می باشند، به‌عنوان ابزارهایی ساده و کارامد نقش بسزایی حهت اندازه‌گیری دبی جریان در کانال های روباز محسوب می‌شوند. نصب ساده، هزینه راه اندازی پایین و دقت بسیار مناسب در اندازه‌گیری میزان دبی جریان از ویژگی‌های مهم این نوع از سازه‌هاست. در این پژوهش از نتایج آزمایشگاهی به دست آمده از سازه فلوم گلو بریده که با قرار دادن دو صفحه مثلثی در دو طرف دیواره‌های کناری یک کانال مستطیلی و تشکیل مقطع مستطیلی و ذوزنقه ای به کار گرفته شد، جهت توسعه مدل های یادگیری ماشین مورد بررسی قرار گرفت. به منظور برآورد دبی جریان در این نوع از کانال ها از مدل‌های شامل دسته‌بندی گروهی داده‌ها (GMDH)، ماشین بردار پشتیبان (SVM) و جنگل تصادفی (RF) استفاده گردید. بدین منظور از پارامترهای هندسی و هیدرولیکی شامل عرض تنگ‌شدگی در محل سازه، شیب‌های افقی و عمودی دیواره‌های مثلثی شکل، عمق نسبی جریان به‌عنوان متغیر ورودی استفاده و دبی به‌عنوان متغیر خروجی (پاسخ) در نظر گرفته شد. نتایج نشان داد که مقدار آماره ریشه میانگین مربعات خطا (RMSE) برای مدل‌های مبتنی بر GMDH، SVM و RF به‌ترتیب، 033/0، 016/0 و 020/0 و مقدار آماره ضریب تعیین (R2) به‌ترتیب، 805/0، 951/0 و 900/0 به‌دست آمد. مقایسه بین تحقیقات گذشته و نتایج حاضر حاکی از برتری عملکرد مدل مبتنی بر SVM نسبت به سایر مدل‌های توسعه یافته بود. عمق آب به عرض مقطع تنگ شده به‌عنوان مهم‌ترین داده ورودی مدل‌ها توسعه یافته شناسایی شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Discharge Prediction in Flumes with Trapezoidal Contraction by Machine Learning Techniques

نویسنده [English]

  • mohamadreza zayeri

assistant professor at shahid chamran university of ahvaz

چکیده [English]

Introduction

The effective use of water for irrigation requires that flow discharge and flow volume be measured carefully. Venturi flumes are widely-used structures for monitoring flow discharges in canal networks (Venturi tubes used in pipelines). Venturi was the first that observed the effect of a local contraction in a conduit on flow velocity distribution. The Venturi flumes have a local constriction. These devices may be built in different shapes and generally are very accurate when operated under free outflow conditions. Longitudinal section of the Venturi flumes has a constant bottom slope, or the bottom has a local sill or hump. The Venturi flume with an arc-shaped inlet is referred to as Khafagi flume. Montana flume is also a flume without diverging downstream wall. The polygonal-shaped flumes are simpler in construction than curve-shaped flumes and are less expensive due to plan shaped elements. The Parshall flume is characterized by a specific shape with variousdegrees of convergence and divergence. Since development of the Parshall flume in 1926, many studies have been made to simplify, reduce construction costs, increase performance and accuracy of the flumes. A review of the literature of the subject shows that the study of hydraulics in flow measurement flumes is mainly based on laboratory research, and although numerical modeling is of interest, due to the complexity of the geometry of the section and the Contraction of the triangular shape, their accuracy is not reported to be acceptable. On the other hand, researchers have tried to develop and use soft computing models to estimate flow characteristics in such sections due to the hydraulic complexity of these types of flumes, which according to published reports, their accuracy has been suitable in all types of sections. Therefore, in this research, the development of data group classification model, support vector machine (SVM) model and random forest algorithm were developed to estimate the Discharge in flumes with triangular contraction.



Methodology

By investigating the hydraulics of flow in flumes, researchers have found that the Discharge depends on the width of the contraction at the location of the structure, the horizontal and vertical slopes of the triangular walls, and the relative depth of the flow. Therefore, in the present study, for the development of GMDH, SVM and RF models, five dimensionless input parameters were considered. GMDH algorithm has been widely used in solving various hydraulic engineering problems. One of the most important applications of this method is the estimation of erosion around the bridge base, downstream of the cup-shaped launcher, and the discharge coefficient of flow measurement structures such as overflows. The SVM model is divided into two main groups a) Support Vector Classification model and b) Support Vector Regression model or SVR for short. The support vector machine classification model is used to solve data classification problems that are placed in different classes, and the support vector machine regression model is used to solve forecasting problems.



Results and Discussion

First, the collected data are divided into two categories, training and testing. It should be noted that the number of collected data is 592, and in this research, 80% of the data was assigned to training and the remaining 20% to testing. The training data is used for calibration and the test data is used for validation. Due to the fact that the collected data do not have a time series nature, they were randomly assigned to each of the training and testing groups. First, the results of the random forest model are presented. The reason for the priority of presenting the results of the random forest model compared to other modes used in this research is the identification of the most important effective parameters in the development process of the random forest model in the modeling and estimation of Discharge.



Conclusions

First, the collected data are divided into two categories, training and testing. It should be noted that the number of collected data is 592, and in this research, 80% of the data was assigned to training and the remaining 20% to testing. The training data is used for calibration and the test data is used for validation. Due to the fact that the collected data do not have a time series nature, they were randomly assigned to each of the training and testing groups. First, the results of the random forest model are presented. The reason for the priority of presenting the results of the random forest model compared to other modes used in this research is the identification of the most important effective parameters in the development process of the random forest model in the modeling and estimation of Discharge.







Keywords Cut-throated flume, Irrigation networks, Support vector machine, GMDH, Random Forest

کلیدواژه‌ها [English]

  • Cut-throated flume
  • Irrigation networks
  • Support vector machine
  • GMDH
  • Random Forest
 1- Aali, F., & Vatankhah, A. R. (2023). Experimental study of simple flumes with trapezoidal contraction.
Flow Measurement and Instrumentation, 90, 102328. https://doi.org/10.1016/j.flowmeasinst.2023.102328
2- Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
3- Bhoria, S., Sihag, P., Singh, B., Ebtehaj, I., & Bonakdari, H. (2021). Evaluating Parshall flume aeration
with experimental observations and advance soft computing techniques.
Neural Computing and Applications,
33, 17257-17271. https://doi.org/10.1007/s00521-021-06316-9
4- Chitrakar, S., Miller, S. N., Kempema, E. W., Caffrey, P. A., & Stern, J. (2018). Impact of Channel Slope
on Cutthroat Flume Performance. Transactions of the ASABE, 61(1), 117-120.
5- Critto, A., Carlon, C., & Marcomini, A. (2003). Characterization of contaminated soil and groundwater
surrounding an illegal landfill (S. Giuliano, Venice, Italy) by principal component analysis and kriging.
Environmental Pollution, 122(2), 235-244.
6- Galán-Martín, Á., Vaskan, P., Antón, A., Esteller, L. J., & Guillén-Gosálbez, G. (2017). Multi-objective
optimization of rainfed and irrigated agricultural areas considering production and environmental criteria: a
case study of wheat production in Spain. Journal of Cleaner Production, 140, 816-830.
7- Ivakhnenko, A. G. (1971). Polynomial theory of complex systems. IEEE transactions on Systems, Man,
and Cybernetics
, (4), 364-378. https://doi.org/10.1109/TSMC.1971.4308320
8- MAATOOQ, J. S., & IBRAHEEM, M. J. (2023). CALIBRATION OF A NEW SIZE OF CUT-THROAT
FLUME FOR SUBMERGED FLOW CONDITION. Journal of Engineering Science and Technology, 18(1),
244-256.
9- Najafzadeh, M., & Mahmoudi-Rad, M. (2019). Estimation of the maximum scour depth at bridge pier
under effects of debris accumulations using NF-GMDH model and evolutionary algorithms.
Environment
and Water Engineering
, 5(3), 213-225. https://doi.org/10.22034/jewe.2019.192130.1326
10-Parsaie, A., Azamathulla, H. M., & Haghiabi, A. H. (2018). Prediction of discharge coefficient of
cylindrical weir–gate using GMDH-PSO.
ISH Journal of Hydraulic Engineering, 24(2), 116-123.
https://doi.org/10.1080/09715010.2017.1372226
11-Ran, D., Wang, W., & Hu, X. (2018). Three-dimensional numerical simulation of flow in trapezoidal
cutthroat flumes based on FLOW-3D. Frontiers of Agricultural Science and Engineering, 5(2), 168-176.
12-Roushangar, K., Saghebian, S. M., & Mouaze, D. (2017). Predicting characteristics of dune bedforms
using PSO-LSSVM.
International Journal of Sediment Research, 32(4), 515-526.
https://doi.org/10.1016/j.ijsrc.2017.09.005
13-Saran, D., & Tiwari, N. K. (2020). Generation of a Versatile Discharge Formula for Multiple Parshall
Flumes Using a Regression Technique. In International Conference on Energy, Materials Sciences &
Mechanical Engineering (pp. 1197-1207). Singapore: Springer Nature Singapore.
14-Sangeeta, Haji Seyed Asadollah, S. B., Sharafati, A., Sihag, P., Al-Ansari, N., & Chau, K. W. (2021).
Machine learning model development for predicting aeration efficiency through Parshall flume.
Engineering
Applications of Computational Fluid Mechanics
, 15(1), 889-901.
https://doi.org/10.1080/19942060.2021.1922314
 15-siasar, H., & honar, T. (2019). Application of Support vector machine, CHAID and Random forest
models, in estimated daily Reference evapotranspiration in northern Sistan and Baluchestan province.
Iranian
Journal of Irrigation & Drainage
, 13(2), 378-388.
16-Skogerboe, G. V., & Hyatt, M. L. (1967). Rectangular cutthroat flow measurement Flumes. Journal of
the Irrigation and Drainage Division
, 93(4), 1-14. https://doi.org/10.1061/JRCEA4.0000524
17-Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of
Geophysical Research: Atmospheres
, 106(D7), 7183-7192
18-Tekade, S. A., Vasudeo, A. D., Ghare, A. D., & Ingle, R. N. (2016). Measurement of flow in supercritical
flow regime using cutthroat flumes. Sadhana, 41, 265-272
.
19-Valipour, M. (2013). Increasing irrigation efficiency by management strategies: cutback and surge
irrigation. ARPN Journal of Agricultural and Biological Science, 8(1), 35-43.
20-Wang, C.D. (2005). Water measurement technique and measure. Beijing: Water and Power Press.
21-Willeitner, R. P., Barfuss, S. L., & Johnson, M. C. (2012). Montana flume flow corrections under
submerged flow. Journal
of irrigation and drainage engineering, 138(7), 685-689.
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000434
22-Yarahmadi, N., & Vatankhah, A. R. (2021). Experimental study on rectangular cut-throated flume:
Effects of flume walls slopes and channel longitudinal slope.
Flow Measurement and Instrumentation, 79,
101919. https://doi.org/10.1016/j.flowmeasinst.2021.101919