نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار پژوهشی بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی اردبیل (مغان)، سازمان تحقیقات آموزش

2 دانش آموخته ی دکترای عمران آب و سازه های هیدرولیکی، دانشکده عمران، دانشگاه تبریز، تبریز، ایران.

3 دانشجوی کارشناسی ارشد مهندسی نقشه برداری - سامانه اطلاعات مکانی، دانشکده مهندسی عمران، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران.

4 دانشیار گروه آب، دانشکده مهندسی عمران، دانشگاه تبریز، تبریز، ایران.

چکیده

کنترل تلفات نشت از کانال‌ها و مخازن ذخیره آب به منظور حفاظت از منابع محدود آب کشور ضروری است. برای کنترل نشت، تاکنون روش‌های متعددی به کار گرفته شده است و امروزه استفاده از پوشش‌های ژئوسنتتیک، مانند ورقه‌های ژئوممبران، مورد توجه قرار گرفته است. در این تحقیق، مشکلات موجود در مراحل مختلف طراحی و اجرای پوشش ژئوممبران در کانال‌ها در شبکه آبیاری مغان بررسی شده است. میزان نشت از این نوع پوشش در شرایط مختلف با استفاده از روش ورودی-خروجی بررسی گردید. در تحقیق حاضر، از بین کانال های اجرا شده با پوشش‌های ژئوسنتتیک در شبکۀ آبیاری مغان، کانال پمپاژ 3 مغان با توجه به اهمیت و ویژگی‌های فنی انتخاب و روی آن از نظر ویژگی­ های هیدرولیکی، کنترل نشت، کارایی و مسائل اجرایی بررسی صحرایی گردید. بر اساس نتایج آزمایش ­ها، میزان متوسط نشت آب در طول بازه کانال‌ 46/86 لیتر در روز در مترمربع به­ دست آمد و بر اساس بازدیدهای صحرایی، رسوب و تخریب در کانال مشاهده نشد. این میزان نشت، در مقایسه با دیگر پوشش‌های ژئوسنتتیک مطالعه شده در دیگر نقاط  برای کانال­های پوشش شده با پلی اتیلن کم چگالی به ضخامت 2/5 میلی­متر (14 تا 69  لیتر در روز در هر مترمربع)، در حد متوسط قرار دارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Field Evaluating the Efficacy of Geomembrane Covers in Mitigating Water Leakage in Moghan Irrigation Network Channels

نویسندگان [English]

  • Karamat Akhavan 1
  • Milad Kheiry Goje biglo 2
  • Majid Mardpour 3
  • Farhoud Kalateh 4

1 .Agricultural Engineering Research Department, Ardabil Agricultural and Natural Resources Research and Education Center, AREEO, Ardabil, Iran.

2 Ph.D. graduate in Civil Engineering, Faculty of Civil Engineering, University of Tabriz, Iran.

3 M.Sc. Student, Department of Surveying and Geomatics Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran.

4 Associate Professor, Department of Water Engineering, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran.

چکیده [English]

Extended Abstract
Introduction
The performance of geomembrane liners depends on proper design, installation, and maintenance. Geomembranes exhibit thermoplastic behavior, expanding and contracting significantly with temperature changes. This can lead to issues like wrinkling and uplift, which can compromise the liner's seepage control function. Proper maintenance is also essential, as geomembranes are sensitive to mechanical damage that can greatly reduce their effectiveness.
In Iran, geomembrane lining of irrigation canals has been implemented in several projects, including the Moghan Irrigation Network. However, comprehensive studies on the performance and durability of these liners are lacking. This study aimed to evaluate the effectiveness of geomembrane liners in controlling seepage from Pumping channel No. 3 of Moghan, and identify any issues related to their design, installation and operation. The results can help guide the rational expansion and optimal utilization of geomembrane lining for improving agricultural water productivity in Iran.

Literature Review
Geomembranes exhibit thermoplastic behavior, expanding and contracting significantly with temperature changes. Geomembranes layers have a high coefficient of thermal expansion, causing wrinkling or waves in parts of the liner when heated. Proper temperature is critical for seam welding to avoid inadequate bonding and uplift of the geomembrane on slopes. Long-term wrinkles can also become failure points. Proper maintenance is essential for the sustainable operation of geomembrane projects, especially for exposed liners. Preventing mechanical damage (intentional and accidental) is crucial for the liner's durability and effectiveness. Geomembranes are sensitive to intentional damage (cutting, burning, abrasion, impact, etc.) which can greatly reduce the liner's seepage control capacity.

Methodology
The Moghan irrigation network, particularly Pumping Channel No. 3, has been a focal point for evaluating hydraulic performance, seepage control, and durability in irrigation systems. This channel, which spans 28 kilometers, is crucial for drawing water from the irrigation network and has a capacity of 2.3 cubic meters per second, serving approximately 3,500 hectares of agricultural and industrial land. Research conducted on this channel has employed the inflow-outflow method to measure average seepage rates, which were found to be around 46.86 liters per day per square meter. This rate is considered moderate compared to other geosynthetic-lined channels, highlighting the need for ongoing maintenance and monitoring to manage water loss effectively.
Field inspections have revealed significant deterioration in the channel's walls and floor, leading to operational challenges. In 1999, significant repairs were made to three critical sections of the canal, covering 8 kilometers in total. However, these repairs proved insufficient, as severe damage reoccurred within two years of service. This situation emphasizes the necessity for robust construction practices and the potential benefits of using advanced materials, such as geomembranes, to enhance the durability and performance of irrigation channels. The research indicates that while immediate repairs can address some issues, long-term solutions are essential for maintaining the integrity of the irrigation infrastructure.
Overall, the evaluation of Pumping Channel No. 3 illustrates the complexities and challenges faced in managing irrigation systems, particularly regarding hydraulic efficiency and seepage control. The findings suggest that integrating geosynthetic materials could significantly improve the channel's performance and longevity, thereby optimizing water resource management in the Moghan region. Continuous assessment and adaptation of maintenance strategies will be crucial in ensuring that the irrigation network meets the agricultural demands of the area effectively.

Results and Discussion
The average seepage rate along the canal reaches was 0.4686 liters per square meter per day. No sedimentation or damage was observed during field inspections. The results demonstrate the acceptable short-term effectiveness of well-installed geomembrane liners in controlling water losses. Properly designed and maintained geomembrane liners can significantly reduce seepage, improving agricultural water productivity. However, geomembranes require careful consideration in design, construction and operation to avoid issues like thermal wrinkling and mechanical damage that can compromise their seepage control function.

Conclusion
Controlling seepage from water storage and conveyance systems is essential in water-scarce countries like Iran. Geosynthetic liners, especially geomembranes, are rapidly expanding in Iran due to their unique waterproofing capabilities and other advantages like quick and easy installation. However, comprehensive studies on the performance of these liners are lacking. Rational expansion, proper utilization and optimal investment requires comprehensive evaluation of completed projects. This study's results indicate the acceptable short-term effectiveness of well-installed geomembrane liners in controlling water losses. Therefore, geomembrane liners can contribute to improving agricultural water productivity by significantly reducing seepage, if they meet waterproofing requirements. However, long-term performance and durability require further investigation.

کلیدواژه‌ها [English]

  • Geomembrane
  • Seepage control
  • Irrigation canal lining
  • Hydraulic performance
  • Water conservation
Akhavan Giglou, K., Kheiry, M., Ahmadpari, H., Abbasi, S., & Kalateh, F. (2023). Investigating virtual water content and physical and economic water productivity indicators in crops (Case study: Moghan irrigation network, Ardabil province). Water and Soil Management and Modelling, 3(3), 277-295.‏ https://doi.org/10.22098/MMWS.2023.11899.1186
Akhavan, K. (2012). Investigating transfer efficiency and problems of operation and maintenance of third grade canals (canals) in Moghan irrigation network. Agricultural Engineering and Technical Research Institute, final report of the research plan, 62 p.
Akhavan, K., Abbassi, N., Kheiry Ghoujeh Biglou, M., & Ahmadpari, H. (2021). Investigation on conveyance efficiency and operation issues of precast concrete channels (Canalette) in Moghan irrigation network. Irrigation and Drainage Structures Engineering Research, 22(83), 21-42.‏ https://doi.org/10.22092/idser.2021.354260.1470
Akhavan, K., Kheiry, M., Abbasi, S., Daneshfaraz, R., & Kalateh, F. (2023). Evaluation of Hydraulic Performance and Operation of Sluice and Neyrpic Modules in Water Distribution Canals (Case Study: Moghan Irrigation Network, Ardabil). Irrigation and Water Engineering, 13(3), 1-22.‏ https://doi.org/10.22125/iwe.2023.168163
Branscheid, V. (1997). Irrigation investment briefs, FAO Investment Centre, Occasional Paper Series, No. 4, 90 p.
Choopan, Y., Emami, S., & Kheiri ghooje bigloo, M. (2020). Evaluating Election, Imperialist Competitive Algorithms and Artificial Neural Network Method in Investigating the Groundwater Level of Reshtkhar Plain. Amirkabir Journal of Civil Engineering, 52(6), 1333-1246. doi: 10.22060/ceej.2019.15344.5888
Comer, A.I. (2000). Canal lining systems in irrigated agriculture, GRID, Vol.15, pp.4-6.
DeMaggio, J. (1990). Technical Memorandum: San Luis unit drainage program project files. US Bureau of Reclamation, Sacramento, CA.‏
Fipps, G., & Leigh, E. (2000). Harlingen irrigation district Cameron county no. 1, Texas, Harlingen Irrigation District, Internal record, 11p.
Ghojeh-biglou, M. K., & Pilpayeh, A. (2019). Effect of geometric specifications of ogee spillway on the volume variation of concrete consumption using genetic algorithm. Revista Ingeniería UC, 26(2), 145-153.‏
Giglou, K. A., Biglou, M. K. G., Mehrparvar, B., & Naghadeh, A. S. (2019). Investigating Amount of Leakage, Sediment and Durability in Geosynthetic Cover of Pumping Channel 3 at Irrigation Network of Moghan. Revista Geoaraguaia, 9(2). ‏
Ivy, D., & Narejo, D. (2003). Canal lining with HDPE, GFR, Vol 21, 5: (1-4).
Kalateh, F., & Kheiry, M. (2024). A Review of Stochastic Analysis of the Seepage Through Earth Dams with a Focus on the Application of Monte Carlo Simulation. Archives of Computational Methods in Engineering, 31(1), 47-72.‏ https://doi.org/10.1007/s11831-023-09972-3
Kalateh, F., Hosseinejad, F., & Kheiry, M. (2022). UNCERTAINTY QUANTIFICATION IN THE ANALYSIS OF LIQUEFIED SOIL RESPONSE THROUGH FUZZY FINITE ELEMENT METHOD. Acta Geodynamica et Geomaterialia, 19(3). ‏ https://doi.org/10.13168/AGG.2022.0007
Kalateh, F., Ghamatloo, A., & Kheiry, M. (2024). Investigating the Reservoir Sediment Effects on Seismic Damage of Concrete Gravity Dams Using Nonlinear Incremental Dynamic Analysis (NIDA). Iranian Journal of Science and Technology, Transactions of Civil Engineering, 1-17.‏ https://doi.org/10.1007/s40996-024-01466-x
Kheiry Ghojeh Biglou, M., & Pilpayeh, A. (2020). Optimization of height and length of ogee-crested spillway by composing genetic algorithm and regression models (case study: spillway of Balarood Dam). Irrigation and Drainage Structures Engineering Research, 20(77), 39-56.‏ https://doi.org/10.22092/idser.2019.124750.1368
Kheiry, M., & Kalateh, F. (2023). Uncertainty Quantification of Steady-State Seepage Through Earth-fill Dams by Random Finite Element Method and Multivariate Adaptive Regression Splines. Journal of Hydraulic Structures, 9(2), 48-74.‏ https://doi.org/10.22055/jhs.2023.44288.1259
Mahdavi Mortazavi, M., & Jafari, M. (2006). Geomembranes are a new way to control and remove environmental pollutants from hazardous waste landfills. The first specialized conference on environmental engineering, Tehran.
Nayak S.,  Sahoo B.C.,  Mohapatra P.K., & Pattanaik G.P. (1996). Profit potential of lining watercourses in coastal commands of Orissa. Environment & Ecology, 14(2):343-345.
Nofziger D.L. (1979). The influence of canal seepage on groundwater in Lugert Lake irrigation area. Oklahoma Water Resources Research Institute, OSU.
Rahimi, H., Sohrabi, T., & Ghobadinia, M. (2007). Application of geosynthetics in irrigation and drainage. National Irrigation and Drainage Committee of Iran. 126 p.
Rohe, F.P. (2004). PVC Geomembrane liner placement underwater in an operating irrigation canal, Proceedings of the Peruvian International Geosynthetic Societies’ “First National Congress on Geosynthetics”, October 27-29.
Salemi, H.R. (1999). Modification of the experimental equations of water leakage from the canal in the Rudasht region of Isfahan. The final report of the research project, Agricultural Engineering and Technical Research Institute, No. 522/78, 40 pages.
Sarkar S.S., & Majumder R. (1995). Geosynthetic reinforced canal systems and irrigation structures, Proceedings Water Energy, International R&D Conference, New Delhi, India, pp. 262-274.
Schultz, B., & DE Wrachien, D. (2002). Irrigation and drainage systems Research and development in the 21st century, Irrig. And Drain. 51: 311–327. https://doi.org/10.1002/ird.67
Snell, M. (2001). Lining old irrigation canals: thoughts and trials, Irrig. And Drain. 50: 139–157.
Soong, T. Y., & Koerner, R. M. (1999). Behavior of waves in high density polyethylene geomembranes: a laboratory study. Geotextiles and Geomembranes, 17(2), 81-104.‏
Take, W. A., Chappel, M. J., Brachman, R. W. I., & Rowe, R. K. (2007). Quantifying geomembrane wrinkles using aerial photography and digital image processing. Geosynthetics International, 14(4), 219-227.‏
USBR (1976). Lining for Irrigation Canals. 149p.
USBR (2002). Canal-lining demonstration project year 10 final report, R-02-03, 230p.