نوع مقاله : یادداشت فنی

نویسندگان

1 دانشیار پژوهش، مؤسسه تحقیقات فنی و مهندسی کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

2 استادیار پژوهش، مؤسسه تحقیقات فنی و مهندسی کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

چکیده

مفهوم آب مجازی در قرن بیست و یکم به‌عنوان شاخصی کلیدی برای ارزیابی مصرف بهینۀ آب در تولید محصولات کشاورزی، به‌ویژه در مواجهه با بحران کمبود آب، برجسته شده است. این مطالعه به بررسی و تحلیل آب مجازی گندم آبی در ایران پرداخته است که یکی از محصولات راهبردی کشاورزی شناخته می­شود. این مطالعه تفاوت‌های مقدار آب مجازی گندم آبی را در استان‌ها و اقلیم‌های مختلف کشور بررسی کرده است. نتایج بررسی­ها نشان می‌دهد میزان آب مجازی گندم آبی در ایران در دامنۀ وسیع 3523-284 مترمکعب بر تن قرار دارد و به‌طور متوسط برابر 1400 مترمکعب بر تن و 50 درصد بالاتر از میانگین میزان آب مجازی گندم در تعدادی از کشورهای جهان  (930 مترمکعب بر تن) است. بر این اساس، بیشترین آب مجازی آبی (دامنۀ 3523-1539 مترمکعب بر تن) مربوط به استان­های خوزستان، کرمان، سمنان، بوشهر، سیستان و بلوچستان، اصفهان، فارس، یزد، و بخش­هایی از استان­های قم، کرمانشاه، خراسان جنوبی، خراسان شمالی، چهارمحال و بختیاری، و آذربایجانشرقی با متوسط 2610 مترمکعب بر تن است. کمترین آب مجازی آبی (دامنه 586-284 مترمکعب بر تن) مربوط به استان­های مازندران، همدان، گلستان، کردستان، کهکیلویه و بویر­احمد و مناطقی از استان­های خراسان جنوبی، مرکزی، هرمزگان، و ایلام با متوسط 451 مترمکعب بر تن است. بررسی‌ها همچنین نشان می­دهد اکثر مناطق تحت کشت گندم در ایران (حدود 53 درصد زمین­های تحت کشت آبی)، در مناطق با بحران کم‌آبی واقع شده­است. کشت گندم از ابعاد مقدار نیاز آبی و کارایی مصرف آب پتانسیل در استان­های مختلف دارای درجات متفاوتی از برتری است. از جنبۀ مقدار آب مجازی آبی، کشت گندم در دو استان گلستان و اردبیل که نسبتا مشکل کم­­آبی ندارند و مقدار آب مجازی گندم در آن­ها پایین نیز هست، برتری زیادی دارد.  استان خوزستان نیز در صورت بهبود مدیریت آبیاری، با توجه به اقلیم مناسب و گرمای هوا و امکان استفاده مناسب از بارش های زمستانه  در فصل رشد و رسیدگی سریع محصول، برای کشت گندم دارای برتری است. کشت گندم در برخی مناطق ایران، به‌ویژه در مناطق مرکزی و جنوب شرقی، مناسب نیست. نتایج این بررسی بر لزوم مدیریت بهینۀ منابع آب کشاورزی و انتخاب راهبردی مناطق و سطح تحت کشت گندم در الگوی کشت ملی از جنبه برتری تولید مرتبط با نیاز آبی، محدودیت منابع آب، بهبود بهره­وری و کاهش مقدار آب مجازی، کاهش ضایعات، و تجارت آب مجازی گندم تأکید دارد.

کلیدواژه‌ها

عنوان مقاله [English]

Investigating the Status of Virtual Water of Irrigated Wheat and Providing Technical and Policy Solutions for its Improvement in Iran

نویسندگان [English]

  • Nader Heydari 1
  • Farshid Taran 2

1 Associate Professor; Agricultural Engineering Research Institute (AERI); Agricultural Research, Education and Extension Organization (AREEO); Karaj; Iran.

2 Agricultural Engineering Research Institute (AERI); Agricultural Research, Education and Extension Organization (AREEO); Karaj; Iran

چکیده [English]

The concept of virtual water has been highlighted in the 21st century as a key indicator to evaluate the optimal use of water in the production of agricultural products, especially in the face of the water shortage crisis. This study analyzed the virtual water of irrigated wheat, known as one of the strategic agricultural products, in Iran and investigated the differences in the amount of virtual water of irrigated wheat in different provinces and climates of the country. The results indicated that the amount of virtual water of irrigated wheat in Iran is in a wide range of 284-3523 m3 ton-1 with an average of 1400 m3 ton-1, being 50% higher than the average values found in a number of other countries (930 m3 ton-1). The highest amount of virtual water (1539-3523 m3 ton-1) is in the provinces of Khuzestan, Kerman, Semnan, Bushehr, Sistan and Baluchestan, Isfahan, Fars, Yazd, some areas of Qom, Kermanshah, South Khorasan, North Khorasan, Chaharmahal and Bakhtiari, and East Azarbaijan with an average of 2610 m3 ton-1. Also, the lowest amount of virtual water (284-586 m3 ton-1) can be seen in the provinces of Mazandaran, Hamedan, Golestan, Kordestan, Kohkiluyeh and Buyer Ahmad, some areas of South Khorasan, Markazi, Hormozgan, and Ilam with an average of 451 m3 ton-1. The study showed that most of the areas under cultivation of wheat in Iran (about 53% of the irrigated wheat lands) are located in areas with water shortage crisis. The advantage of wheat cultivation in terms of water requirement and water use efficiency varies in different provinces. In terms of virtual water content, wheat cultivation is suitable in two provinces of Golestan and Ardabil, which relatively do not have water shortage problems and have low virtual water content of irrigated wheat. Khuzestan province also is preferable for wheat cultivation if the irrigation management is improved, due to the suitable climate and warm weather and the possibility of using winter rains in the growing season and quick ripening of the crop. But, wheat cultivation is not suitable in some regions of Iran, especially in the central and southeastern regions. The results of this study emphasize the necessity of optimal management of agricultural water resources and the strategic selection of areas under wheat cultivation based on the national cropping pattern from the aspect of advantage of production related to water requirements, water resource limitations, improving productivity and reducing virtual water content, reducing of crop wastes, and more attention on virtual water trade of wheat.

کلیدواژه‌ها [English]

  • Production
  • Water consumption
  • Water resources management
  • Water shortage
Abbasi, F. & Abbasi, N. (2024). An analysis of irrigation efficiencies over time in Iran. Iranian Journal of Irrigation and Drainage, 17(6):1025-1033. (In Persian)
Abbasi, F., Sohrab, F. & Abbasi, N. (2017). Evaluation of irrigation efficiencies in Iran. Irrigation and Drainage Structures Engineering Research, 17(67):113-128. (In Persian)
Agricultural Statistics Yearbook (2022). Agricultural Statistics Yearbook 2021-2022: Volume 1, Crop Products. Statistical Deputy, Information Technology and Communications Deputy, Economic Planning Deputy of the Ministry of Agriculture Jahad, September 2022. (In Persian)
Agricultural Statistics Yearbook (2024). Agricultural Statistics Yearbook 2023-2024: Volume 1, Crop Products. Statistical Deputy, Information Technology and Communications Deputy, Economic Planning Deputy of the Ministry of Agriculture Jahad, September 2024. (In Persian)
Ahmadvand, M.R. & Najafpour, Z.A. (2010). Analysis of wheat cultivation area and supportive policies during the first to fourth national development plans. Journal of Economic Research and Policies, 17 (53): 59-76. (In Persian)
Aligholinia, T., Rezaei, H., Behmanesh, J. & Montaseri, M. (2017). Water footprint index study for dominant crops in Urmia lake basin and its relationship with irrigation management. Water and Soil Science, 27 (4): 37-48. (In Persain)
Aligholinya, T., Sheibany, H., Mohamadi, O. & Hesam, M. (2019). Comparison and evaluation of blue, green and gray water footprint of wheat in different climates of Iran. Iran-Water Resources Research, 15 (3): 234-245. (In Persain)
Allan, J.A. (2011). Virtual water: Tackling the threat to our planet's most precious resource. I.B. Tauris.
Bazrafshan, O., Dehghanpir, Sh. & Holisaz, A. (2018). Estimation of virtual water trade in the Hormozgan province over the past decade. Desert Management, 5 (10): 116-129. (In Persian)
Ehsani, M. (2009). Understanding virtual water. Lecture presented at the Seminar "Water and Sustainable Development with a Focus on Virtual Water", Iranian National Committee on Irrigation and Drainage, July 2009, Tehran International Exhibition Center. (In Persian)
Ehsani, M., Khaledi H. & Barghi, Y. (2008). Introduction to virtual water. Iranian National Committee on Irrigation and Drainage. (In Persian)
El-Marsafawy, S.M., Swelam, A. & and Ghanem, A. (2018). Evolution of crop water productivity in the Nile Delta over three decades (1985–2015). Water 2018, 10, 1168; doi:10.3390/w10091168.
Ewaid, S.H., Abed, S.A. Abbas, A.J. and Al-Ansari, N. (2020). Estimation the virtual water content and the virtual water transfer for Iraqi wheat. Journal of Physics: Conference Series, 1664: 012143.
Fader, M., Rost, S., Muller, Ch., Bondeau, A. and Gerten, D. (2010). Virtual water content of temperate cereals and maize: Present and potential future patterns Journal of Hydrology, 384 (3-4): 218-231.
Faramarzi, M., Yang, H., Mousavi, J., Schulin, R., Binder, C. R.& Abbaspour K. C.(2010). Analysis of intra-country virtual water trade strategy to alleviate water scarcity in Iran. Hydrol. Earth Syst. Sci., 14, 1417–1433.
Jafari, H. & Abbasi, F. (2025). Evaluation of wheat water irrigation management in Iran with the approach of reducing the area under cultivation and improving waterproductivity. Iranian Journal of Soil and Water Research, Doi:10.22059/ijswr.2024.380800.669778. (In Persian)
Harris, F., Dalin, C., Cuevas, S., Lakshmikantha, N.R, Adhya, T., Joy, E.J.M., Scheelbeek, P.F.D., Kayatz, B., Nicholas, O., Shankar, Bh., Dangour, A.D. and Green, R. (2020). Trading water: virtual water flows through interstate cereal trade in India. Environmental Research Letters, 15: 125005.
Hasili, M.A., Golabi, M. & Boroumandnasab, S. (2017). Study and evaluation irrigation and drainage networks by using analytic hierarchy process with virtual water approach: Case study; Shahid Rajae, Ramshir and Hendijan networks. Iran-Water Resources Research, 13 (3):112-127. (In Persian)
Heydari, N. (2015). Concepts of water productivity and virtual water. Scientific Lecture, Agricultural Engineering Research Institute, Karaj, Alborz, Iran. (In Persian)
Heydari, N. (2022). Wheat water productivity in Iran compared with data of some countries. Journal of Water Research in Agriculture, 35 (4): 421-435. (In Persian)
Heydari, N. & Dehghanian, S.E. (2018). Investigation of climate change impacts on agricultural sector of Iran from water resources management perspective. Research Report no. 5474, Dec. 30, 2018, 137p. (In Persaian)
Heydari, N., Keshavarz, A. & Dehghani-Sanij, H. (2005). Optimal management of agricultural water consumption in Iran considering drought and aridity. The 2nd conference on methods to prevent waste of national resources, June 15, 16, Academy of Sciences of Iran, Tehran, Iran. (In Persian)
Hoekstra, A.Y., Chapagain, A.K., Aldaya, M.M. and Mekonnen, M.M. (2011). The Water Footprint Assessment Manual: Setting the Global Standard. Earthscan.
Iranian National Committee on Irrigation and Drainage. (2009a). Water and sustainable development with a focus on virtual water. Summary of the Workshop, organized by the National Committee on Irrigation and Drainage of Iran in collaboration with the Iran Water Resources Management Company, July 18, Tehran International Exhibition Center. (In Persian)
Iranian National Committee on Irrigation and Drainage. (2009b). Virtual water policy: challenges and perspectives. Newsletter of the Iranian National Committee on Irrigation and Drainage of Iran, No. 74. (In Persian)
Keshavarz, A. (2017). Analysis of water resources and the agricultural outlook of the country. National Center for Strategic Agricultural and Water Studies of the Iran Chamber of Commerce, The 2nd National Conference on Iranian Medicinal Herbs papers, Urmia University. (In Persian)
Keshavarz, A. & Heydari, N. (2004). A perspective on the waste and misuse of national water resources in the production and consumption stages of agricultural products. The 1st Symposium of National Resources Loss Prevention, June 8, 10, Academy of Sciences of Iran, Tehran, Iran. (In Persian)
Khoramivafa, M., Nouri, M., Mondani, F. and Veisi, H. (2017). Evaluation of virtual water, water productivity and ecological footprint in wheat and maize farms in west of Iran: A case study of Kouzaran region, Kermanshah Province. Journal of Water and Sustainable Development, 3(2): 19-26. (In Persian)
Masud, M.B., Wada, Y., Goss, G., Faramarzi, M. (2019). Global implications of regional grain production through virtual water trade. Science of the Total Environment, 659: 807-820.
Mekonnen, M., Hoekstra, A.Y. (2011). National water footprint accounts: the green, blue and grey water footprint of production and consumption. Delft, the Netherlands: Unesco-IHE Institute for Water Education, Value of Water Research Report 50, 50.
Mirbagheri, V., Baradaran Nasiri, M., Emami, J. & Hosseini Sabet S.M. (2016). Production and trade of basic products of the agricultural sector in the period of 2001-2016. Vice President of Infrastructure Research and Production Affairs, Office of Infrastructure Studies (Agricultural Group), Research Center of the Islamic Council, subject code 250, serial number 15201, 99P.(In Persian)
Mohammadjani, A. & Yazdanian, N. (2014). Analysis of the water crisis situation in the Iran country and management requirements. Ravand Quarterly, 65-66: 117-144. (In Persian)
Muratoglu, A. 2020. Assessment of wheat’s water footprint and virtual water trade: a case study for Turkey. Ecological Processes, 9: 13.
Najafi Alamdarlu, H., Vakilpour, M.H. and Riahi, F. (2015). Investigating the amount of virtual water in wheat and water productivity in Iran. The 2nd Iternational Conference and the 5th NationaCconference of Environmental and Agricultural Researches of Iran, Hamadan, Iran. (In Persian)
Omidi, T. (2017). Determination and analysis of strategies and priorities for import and export of agricultural products based on the concept of virtual water. M.Sc. Thesis, Department of Water Resources Engineering, Faculty of Agriculture, Tarbiat Modares University, 259 pp. (In Persian)
Omidi, F. & Homaee, M. (2015). Deriving crop production functions to estimate wheat virtual water and irrigation water price. Cereal Research, 5 (2): 131-143. (In Persian)
Rathore, L.S., Aziz, D., Demeke, B.W. and Mekonnen, M.M. (2023). Sustainability assessment of virtual water flows through cereal and milled grain trade among US counties. Environmental Research: Infrastructure and Sustainability, 3 (2): 025001.
Renault, D. (2002). Value of Virtual Water in Food: Principles and Virtues. Land and Water Development Division (AGL), Food and Agriculture Organization of the United Nations, Italy.
Salari, S., Karandish, F. & Darzi-Naftchali, A. (2015). Spatial and temporal analyses of the wheat virtual water variations in Sistan and Blouchestan Province. Irrigation and Water Engineering, 5 (2): 81-94. (In Persian).
Shahrokhnia, M.A., Dehghanian, S.E., Nakhjavanimoghaddam, M.M. & Abbasi, F. (2023). Determining the volume of applied water and water productivity in orange and tangerine orchards in Fars province. Iranian Journal of Irrigation and Drainage, 17 (1): 77-86. (In Persian)
Statista. (2025a). Statistics, Agriculture, Farming, forecast volume of wheat produced in the European Union (EU 27) from 2017 to 2023. Retrieved from https://www.statista.com.
Statista. (2025b). Statistics, Agriculture, Farming, Wheat production in China between 2014 and 2024. Retrieved from https://www.statista.com
Statista. (2025c). Statistics, Agriculture, Farming, Production volume of wheat during rabi season in India from Financial Year 2010 to 2022, with an Estimate for 2023. Retrieved from https://www.statista.com.
Sun, S.K., Wu, P.T., Wang, Y.B., Zhao, X.N. (2013). The virtual water content of major grain crops and virtual water flows between regions in China. Journal of the Science of Food and Agriculture, 93 (6): 1427-1437.
Vafai, K. & Bazr Afshan, A. (2017). Virtual water balance of wheat in the crop year 2014-2015 in Iran. The 4th International Conference on Environmental Planning and Management, Tehran, Iran. (In Persian)
Xinchun, C., Mengyang, W., Xiangping, G., Yalian, Zh., Yan, G., Nan, W., Weiguang, W. (2017). Assessing water scarcity in agricultural production system based on the generalized water resources and water footprint framework. Science of the Total Environment, 609: 587-597.